Satellite Communications Toolbox
Reference

7

MATLAB

R2021b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Satellite Communications Toolbox Reference
© COPYRIGHT 2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History

March 2021 Online only New for Version 1.0 (Release 2021a)
September 2021 Online only Revised for Version 1.1 (Release 2021b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps

1
Functions

2
Objects

3|

System Objects

4

iii

Apps

1 Apps

Satellite Link Budget Analyzer

Analyze link budgets for satellite communications

Description

The Satellite Link Budget Analyzer app enables you to analyze link budgets for satellite
communications.

Using the app, you can:

Analyze link budgets by specifying inputs properties related to

* Location, transmitter, and receiver characteristics for satellites and ground stations
* Atmospheric conditions for links

Design a satellite communications link to meet a minimum link margin requirement
Have insight into intermediate link budget computations

Calculate, compare, and visualize results across a sweep of multiple parametrized design
constraints

For more information, see “Get Started with Satellite Link Budget Analyzer App”.

Sew

Link Canvas

PR Longtade iyl 4D
PE] Aiude fum] 203
Trarmwralin
LRI

B windarmnce v o)

L
a1
Grard Statior
Harew 51
Type Bateiine
PE1 Lowsde eyl ¥

P e QT ool 3
PEI R el (60 1

PRA ot i doasi (2B 1

4\ Sanellne Lisk Budget Analyer - usttied - Satelite r (] 4
& |
Selecl Ana
t Lmme -
Link Budget FSRL
Tegy Hame L (¥} L3 =t ——
. Dagiancs (ko ITHGGDT A EFITesld T ETHas0E
i @ Elwses kil W s s 3 +
H1 T ERF j§8W) -] e - |
_ ¥ 200
o H Prelaizutee oo (96] ol gl 1a3 3 2
t L PPy i R 30 EM HELES | F 105
¥ P st mrmaation o A FiE nam 3 = 180
] Total mimenphanc v) (¥ % 208 o| LR
L2 | e Total propagatian lssss: 1) WML amdnr mesme | B0S| L1
¢ " Feceres mntvapes peeser HITW) AT e ke | B Lz
0] L
M CMe BT B maw? mEm L e
| a2 | M1 M m) L] 17952 52T 175 | Opsaiiris) Pt
W12 Fotwaived EbB (08 115 1ms 16 0es2 i 2 3 L) 5 & T
H11 Wi o 185 21544 L Rk 4 052 Disinrce fkmj 1ot
Satedite Margin - L1 Margin - L2 Wlangin - L3
e | Whargin (a8
L Opstraing Paint
=i 1
— 5ooG | &
E
= ¥
s 4000 | Ll 2
g 4000 " o
5 B
2 2000 | |
2000 |
|
oos| % Al B an
5 10 15 20 5
T HPA powsr [GBW

1-2

Satellite Link Budget Analyzer

Open the Satellite Link Budget Analyzer App

MATLAB® Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

Satellite Link
app icon. Budget Anal...

MATLAB Command Prompt: Enter satelliteLinkBudgetAnalyzer.

Examples

Show Default Satellite Link Budget App Configuration

This example shows the default configuration that appears when you open the Satellite Link
Budget Analyzer app.

Default Configuration Without Link Availability Analysis

A message dialog box opens before the app launches. To analyze the link budget with the P.618
scenario, you must download, extract, and add the MAT-files with digital maps on the MATLAB path.
Follow the instructions in the dialog box.

4 Satellite Link Budoet Analyzer - XK

Unable to access the MAT-files with digital maps. These files are required

to include link availability analysis using P.618 propagation loss model

in app. Some calculations will not be available without these files and
o will be indicated using hypheni(-}.

Download and extract the MAT-files from
https:fwww.mathworks.com/supportfiles/spc/P6 18/ TURDIgitalM aps.tar.gz to
a location on the MATLAB path.

0]24

If you do not wish to use P.618 calculations in the link budget, close the dialog box to launch the app.

The figure shows the displayed results and plots, which analyze the default satellite communications
link.

In absence of the digital maps, the tags (N6 and N7) are empty. In this case, the values in tag N8
(Total propagation losses) are equal to the values in tag N5 (FSPL).

1-3

1 Apps

4\ Satellite Lirk Budget Analyzer - untited - Link Budget
_ wd o9 @ @ ©
wOHd B & »
Mew Open Save Customize Select Anahze
- ¥ rput/Qutpat Lnksw ¥
FILE CUSTOMIZE AMALYTE -
Link Canvas | LinkBudget | SFL
Tay Naime u L2 L3
n Distance (km) 17E55e+03 4.0Z152+04 3.6133e+14 el
L3 nz Elevation (deg) 18 1253 135231 415653 %5‘205 **
Hn3 Tx EIRP (dEW) 2 45 46 =
4 Polaization loss (dB) 3.0103 3mo 3013 Eon‘ B
1 M5 FSP._ (dB) 1869352 2053634 206.5236 % 185
| i - - a ;
16 Rain attenuation (d8) o190} /
nur Tntal atmnsphenc hasas (1F) - - o 4
ng Total prepagation lecsce (dB) 116.0262 2063634 2066236 || S185 —11
= Teceived isotrapic power (45V/) 60 8455 65373 4655300 g 180 ::g
' 3 w |
p 1o G/ (u}a He) 90.6537 86.2255 86.0532) + Qperating Point
nn CIN] 22H22 16 4438 ACFI 175
W12 Received Eb/Na (dB) 20 6537 162255 16 0592 1 2 3 4 5 & 7
M3 Mascin (d8) 8 6537 42258 40532 Distance {km) < 10%
Ground Station Link Satellit= Margin - L1 Margir - L2 Margin - 13
Mame S1 i y
Type Satelite . / ! <E_> Margin (dB)
" 5o/ n Ope?miw g Point
P81 Latitude (deg) 35 *
;
Ps2 L da (d H i — 3000
ongituto (dogi [10 Default app configuration (in E <
FEI Altude km) 2000 - x ,,3
absence of digital maps on the gaoa . N
Transmitter Mone c
]
— MATLAB path) % som |
PR1 ntederence Ines (d4R) 2 2000 | o
PRZ Rx GIT (dBVK) 25 o A0 AG 0 2% o
PR3 Rufesder loss (4B) 1 2
PRA Other Fx 4B) 1 g i e = 28
or Fx lessce (4B) Tx HPA power (dBW)

1-4

The upper-left pane of the app shows the Link Canvas tab, which displays this default configuration:

* Link L1 is an uplink connecting ground station G1 to satellite S1
* Link L3 is a crosslink connecting satellite S3 to satellite S4
* Link L2 is a downlink connecting satellite S2 to ground station G2

The lower-left pane of the app shows the Ground Station, Link, and Satellite tabs. In these tabs,
you can adjust property settings for each entity in the configured links. To view or adjust the
properties settings of an entity, bring that entity into focus by selecting it in the Link Canvas tab.

The center pane of the app shows the computed link budget results in the Link Budget tab.
The right pane of the app window shows these plots:

* Free-space path loss for links L1, L2, and L3 in the upper-right area (FSPL tab).

* Link margins for links L1, L2, and L3 in separate tabbed plots in the lower-right area (Margin-L1,
Margin-L2, and Margin-L3 tabs, respectively).

Default Configuration with Link Availability Analysis

The app supports analyzing the satellite communications link availability through the propagation
loss model defined in Recommendation ITU-R P.618-13. For details on the P.618 propagation loss
model, see Earth-Space Propagation Losses.

If the MAT-files with digital maps are not available on the path, download and unpack the MAT-files by
entering this code at the MATLAB command prompt.

https://www.mathworks.com/help/satcom/gs/p618-channel-modeling.html

Satellite Link Budget Analyzer

Alternatively, you can download and unpack the ITURDigitalMaps.tar.gz file to a directory that is
on the MATLAB path.

maps = exist('maps.mat'’
p836 = exist('p836.mat'’
p837 = exist('p837.mat'’
p840 = exist('p840.mat'’
matFiles =

if ~all(matFiles)

if ~exist('ITURDigitalMaps.tar.gz'

url =

, file');
, file');
, file');

, file');

[maps p836 p837 p840];

, ' file")

"https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
websave('ITURDigitalMaps.tar.gz'

,url);

untar('ITURDigitalMaps.tar.gz');

else

end

untar('ITURDigitalMaps.tar.gz');

addpath(cd);

end

This figure shows the updates to the configuration in the Link Budget (tags N6, N7, and N8) and
Link (tag PL5) tabs.

4\ Satellite Link Budget Analyzer - untitied - Link
_ Wt GCo@ EJ @)
O = & b
Mew OUpen Save (USTOMIZE Select Analyze
- A Inpl.r,’(:urpur Links > hd
FILE CUSTOMIZE ANALYZE a
Link Canvas Link Budget FSPL
Tag Name L1 L2 L3
N1 Distance (km) 3.T365e+0] 4.0215e+04 3.6136e+04 210
Nz Elevation (deg) 18.3253 135231 415663 || @ 205 * 4
N3 Tx EIRP (dEW/) 32 45 % || 5 o
m Polarization loss (dB) 30103 39103 e | 8
NS FSPL (dB) 186.9352 205.3634 206.5296 | | 5 195 -
e Rain attenuatior (dB) 49145 132271 g I 150!
@ i
N7 Total atmosphenc Iosses (cB) 64993 15 2088 LD I 4
NS Tota propagation losses (dB) 1934344 2205722 206.5296 5185 | — L
"INy Received isatropic power (dBYY) 16T 4447 180 5825 655399 g T -2
N1) G/No {dB-Hz) 84.154¢ T1.0167 860592 | WL / =
| Operatng Point
N1 C/N (dB) 16.3729 32352 18.2777 175 ¢
N12 Recaived Eb/No (dE) 141542 11167 16.1592 1 2 3 q 5 6 7
MN13 Margin (dB) 21544 -10.3833 4.0592 Distance (km) :10°
Ground Station [Link] Satellite Margin -L1 Maigin - L2 Margin - L3
Nama L1
7 7 7
Typs Link 000 / / <=7 Margin (dB)
— / / # Dperatng Point
. . / 7
Ts 59 Default app configuration (with the Esuw [/
/ /
. Frosusney (3Hz) 11 digital maps on the MATLAB path) = / o
@ 4000 y 2 o D
FLZ Banawicth (MHz) 6 % b'. y
PLY Bt rate (Mbps) 10 g 3000 - e
e g
PL Required Eb/MNa (dB) 10 e
irg: q (dB) | 2000 P
PLS Availability (%) 99.9 I 0
PLE Polarization mismatch (deg) 45 1000 kl 40 AR 0
PLT Implamentation oss (dB) 2 5 10 15 20 25
o Tx HPA power [dBW)

Customize Inputs and Outputs

Customize the Properties and Results tabs in the Satellite Link Budget Analyzer app using the
Customize Input/Output tab.

1-5

https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz

1 Apps

Open the Satellite Link Budget Analyzer app. These figures show the default configuration on the

Budget Analyzer and Customize Input/Output tabs.

4 satellite Link Budget Analyzer - untitled - Satellite

UDGET AMNALYZER

e

w O H & b

New Open 3Save Customize Select Analyze
- ¥ Input/Cutput Lirks¥» ¥
ALE CUSTOMIZE ANALYZE i
Link Canvas Link Budget | FSPL
| Tay MName L1 L2 L3
N1 Distance (km) 3 TB6%+01 4 0215e+04 A6130e+04 210 — = |
N2 Elzvation (4g) 193263 13521 41.5653 Eé‘ 205 * 4
Mz TxEIRS (dBW) a2 46 5|5 200 il
hd Polarization loss (d3) 30103 30103 10103 | | 8
13 FSPI dR) 186 9357 MBI 20EI9 | | £ 105
3 Rin atenuation (dB) 49145 13.02T1 0| =100l /
NP Taal amosphenc Iosses (d3) 64993 152088 ol 8 3&/
M3 Total propegation losses (dB) 1934344 2205722 206.5296 2185 f L
Ha Recaived isotropic power (dBW) A6T44a7 1305325 tessmo || B . |/ ti
N10 CiNo (dB-z) B4.1544 71.0167 86.0592 | L % operating Point
11 CN (d3) 163723 3.2362 1082777 175
N12 Received Ebilo (dB) 141544 1.0167 16,0592 1 2 3 4 5 6 7
Ni3 Margin (d8) 21544 10,9833 4.0592 Distance (km) 10
Ground Station | Link Satellite]_ | Margin - L1 Margin-12 | Margin - 13
Name S1 . . :
Type Satsllite 6000 / / <> Margin (dB)

PS1 Latitude (deg)[35 / / *Operating Point

PS2 Longitude (deg) -40 ,E..som & v ! /

PS3 Altitud 2000 =

Lt 2 4000 / . O °

Transmitter Nonz £ o A y

¥ Receiver g 3000 yd o

PR1 Interference loss (dE) 2 2000)

PR2 R G/T (dB/K) 25 -0 - o 5 o

PR3 Fuxfesderloss (dE) 1 1000 | — A z

5 10 15 20 25

PR4 Other Fx losses (dE) 1

Tx HPA power [dBW)

1-6

4 Sruliis Lok Budgel deaios - wreeid - Pregeiss

Fawera iy ey

it et | it (0 S

Ty Farmr
P iy
] o cle
] Lrpe=)

W s Gt | mem arm b al Lemrns Gadeern

L] Pidie
P ey
a2 i
) o rer

BT R T b et 1 Lmenes L o Sl

x Fame
e Ti e kota
mm [T -
w1 N —
S —
rm L——

“warn
] Tlia P e
-y 0 e
iy x nm
in o
(] R
ey &3 i
L] N en
" e
L=t Tebakiniun

L

& 1
-

- [
o n

Sawes

Cwder

Ta EAF
Famren w1

-

L]

T e T s
Tid gt o bk v

[
Ut Formula

= e real kg corgrsla kS 301 201 55
g i pbal sk a g Cary et e POL PO R
i PTu. PT4 . P71 . PTY = PTG PLA
- T by 1]
= VT N, gl gl | T
L e repl rkdaskpeSog el sem HanTLL PO T
A e el brkidgmag cITRETRAM LI HTLL FOI P
o AT
= - -l - P P
-, WPV g s B vt] R
8] MR g B
L L LYW

Wi P T

Satellite Link Budget Analyzer

On the Customize Input/Output tab:

» Use the options in the Add New Property section to add new properties.
* Use the options in the Add New Result section to add new results.
» Use the buttons in the Close section to accept or cancel the changes.

To delete a property or result, select it and click Delete in the respective section.

Add Customized Properties and Results

Add customized properties and results by following these steps.

1 Add a new link property, FEC code rate. In the Add New Property section of the Customize
Input/Output tab, select Link from the Type list. In the Unit box, type -. In the Default value
box, type 0.5. Click Add Property. The Link Properties section of the Properties tab now
includes FEC code rate (tag PLC1).

2 Add another link property, Coding gain. Select Link from the Type list. In the Unit box, type
dB. In the Default value box, type 4. 2. Click Add Property. The Link Properties section of the
Properties tab now includes Coding gain (tag PLC2).

3 Add a new result, Required Eb/No with FEC. In the Add New Result section of the
Customize Input/Output tab, type PL4 - PLC2 (Required Eb/No - Coding gain) in the
Formula box. In the Unit box, type dB. Click Add Result. The Results tab now includes
Required Eb/No with FEC (tag NC1).

4 The formula for Margin (tag N13) on the Results tab is changed to use NC1 instead of PL4.
In the Close section of the app toolstrip, accept all the changes.

This figure shows these updates in the Properties and Results tabs.

A Satelie Link Fudged Auedyren - ol - Resalls m %

PuT HHdi s i wea@e

CUSTOMIZE INPUTFOLTI

L e Add Property Name AddResult | R $AG
Unit
A Cancel
Type |Sateiine ¥ Defaut value 2 Reset Formula S Resct r:m ane
\30 NEW PROPERTY ADD NEW RESLLT CLOSE
Properties Resdts |
Hestore to fectory Lelste Restere 1o ‘actary Daete
I Satelita Properties iApplies Io all Satelit=s) Tea Name Unit Formula
N1 Drslanee wn saluan.mbenal nkbudgeldpp compuleCislarue(PG1, PO2. PG3. F31. P52
PGarang Stanon Fropostios {Appias B0 38 Ground Sianoni) H? Flavarian dagy salcom inlemal inkbudgetdpg compaTaFlevaron(PG, PGF, PRI PS1 FS2
3 Tx BIRA W PT3-PT4 - PT1 - P12 4 FTE . 518
» Transmitter Properties (Aopies to all Satelites 8 Ground Stations) ”m Polarization loas 8 20 * sba(og10{zos3PLE
5 FSPL E:] g1 * e physconst{LightSoeed) | [PLI*1eS)
® Racaior Brapanac (Applss 1o Al Syelines L Graind Srarinas) MG Rain sttenustion EE] s3icom intemal. inkbudgetapp. compautaRainAtenmtion[PL3, PG, PG3, PE3
nr Tt amosphenc lassss £ sateom inlemal inkbudgetApp somputsl sialitrLeesee(PLe, PG, P62, PLT
¥ Link Prepertiss (Agpliss to all Links) o Total propagation Kisses . N5el
Tag Name Unit Default Value N3 Receind isuliopc power 48w H3 -4 -3 -PR1-PLB
e rep— peere 1| 4 Cito HBHr M3 + PR2 - 10°ing" 0(physcons: (Bakrmann)) - PR3 - PRA
2 B,,.,Ndl; MHz 5| M cN] HID - 10710g10{PL2) - 60
2 ' 10 .
a3 Bil et Vg 1| M2 Received EbMNe E=] H1D 10'\\01;"]""\.3} 60
va e — -] Meagin 1] HI2 - W31 -PLT
s Svatabiry - — Ruqurred EBMNa with FEC 3]] |
A6 Polerization mismetch deg 45| If
Akl Implementation oss B 2 1r
o] Antenna mispointing lcss a8 1
A9 Radomo loce B8 1
a1 FEC code e = (Ean P Custom additions to the
" 4 - :
e Coiry g i il | default app configuration
< >

1-7

1 Apps

Delete Existing Results
Delete existing link analysis results by following these steps.

1 In the Results tab, select Rain attenuation (tag N6) and click Delete in this tab. Repeat this
process for Total atmospheric losses (tag N7) and Total propagation losses (tag N8).

2 The formula for Received isotropic power (tag N9) on the Results tab is changed to use N5
instead of N8.

3 In the Close section of the app toolstrip, accept all the changes.

This figure shows these updates in the Results tab.

4\ Satellite Link Budget Analyzer - untitled - Properties

- [m] X
eryrere _____________________ ("FineEien

Name Unit Add Property Mame AddResult &S
Unit Accept Cancel
Type |Satellite ¥ | Default value 2 Reset Formula "2 Reset Al
ADD N ROPERTY lk ADD NEW RESULT CLOSE -
| Properties [Results
Restore to factory Delete Restore to factory Delete
» Satellite Properties (Applies to all Satellites) Tag Name Unit Formula
N1 Distance km satcom internal linkbudgetApp computeDistance(PG1, PG2|
* Ground Station Properties (Applies to all Ground Stations) N2 Elevation deg satcom. intemal linkbudgetApp. computeElevation(PG1, PG2
N3 Tx EIRP dBw PT3-PT4 -PT1-PT2 + PT5 - PL9
» Transmitter Propertias (Applies to all Satellites & Ground Stations) m Polarization loas a8 20 * abs(log1D(cosd(PLE})
5 FSPL da fepl{N1 * 1e3, physconst(LightSpeed]) / (PL1*128]))
» Receiver Propenies (Applies to all Satellites & Ground Stations) N Received isolropic power dBW N3 - N4 - N5 - PR1 - PLS
[Tn10 CMNo dB-Hz NS + PR2 - 10"log10{physconst{Boltzmann’)) - PR3 - PR4
¥ Link Properties (Applies to all Links) N11 CM d8 N10 - 10°log 10{PL2) - 60
N1 /N N10 - 10"log10(PL3) -
Tag T 12 Received Eb/No d8 0 - 10%log 10(PL3) - 60
PL1 Frequency i MN13 Margin dB8 N12 - PL4 - PLT
PL2 Bandwidth |
PL3 Bit rate |
PL4 Required Eb/No q
PL5 Auwailability t|
PLE Polarization mismatch q
PLT Implementation loss q
PL8 Antenna mispainting loss q
PLY Rad [-
ome loss | Custom deletion (Results tag
N6, N7, and N8 deleted)
< > < >

Parameters

BUDGET ANALYZER — Link budget configuration
tab

This figure shows the BUDGET ANALYZER tab with the factory default configuration.

1-8

Satellite Link Budget Analyzer

Froe space paih loss (dE)
A D n b

Fittaived EbS (08

M1l W (83

o

Use the Ground Station, Link, and Satellite tabs to adjust property settings for the link budget
entities shown in the Link Canvas tab.

Ground Station — Ground station location, transmitter, and receiver settings
tab

Select the Ground Station tab to set the location, transmitter, and receiver settings for the ground
station highlighted in the Link Canvas tab. For information about customizing satellite, ground
station, transmitter, receiver, and link properties, and the link budget result computations, see
CUSTOMIZE INPUT/OUTPUT.

Satellite — Satellite location, transmitter, and receiver settings
tab

Select the Satellite tab to set the location, transmitter, and receiver settings for the satellite
highlighted in the Link Canvas tab. For information about customizing satellite, ground station,
transmitter, receiver, and link properties, and the link budget result computations, see CUSTOMIZE
INPUT/OUTPUT.

Link — Link characteristics
tab

Select the Link tab to set link characteristics for the link highlighted in the Link Canvas tab. For
information about customizing satellite, ground station, transmitter, receiver, and link properties, and
the link budget result computations, see CUSTOMIZE INPUT/OUTPUT.

Customize Input/Output — Customize input properties and computations used for output
tab

To view or customize input properties and computations used for output, on the BUDGET
ANALYZER tab, click Customize Input/Output to switch to the CUSTOMIZE INPUT/OUTPUT
tab. In the CUSTOMIZE INPUT/OUTPUT tab, you can

1-9

1 Apps

* Change settings of the satellite, ground station, transmitter, receiver, and link properties from the
factory default inputs

* Add and delete satellite, ground station, transmitter, receiver, and link input properties

* Add, delete, and modify formulas used to compute link budget output results

CUSTOMIZE INPUT/OUTPUT — Customize link budget computations
tab

This figure show the CUSTOMIZE INPUT/OUTPUT tab with the factory default configuration.

Hame

Type Sabellite

Properties

Tag

Fiaaines i tactory

Latihises
sz Longdude
53 Anace

¥ Corruti. Slatin Pesjadions {Appiasi 10 o Gronabd Satisss]
Tag Maene

PG1 Ltiise

PGz Longdude

¥ Fransmene Emopentses |Apphes 1o 3l Satelies & Gasend Stanoas

dh Satellite Link Budget Anabyzer - untitled - Properties _ 0 %
e L il)
Lmit Acd Property Mame Add Reudlt W o
Unit [
= Defpat value - | e Z R 5 el
Rasult
et Riatse 16 actory Twlat
* St Propatiis (Appis 16 5 Salites Tag Nama Uit Foemils
S b AL wigeidgp compuieliiancePG 1, G2 PGI PS
MName t Dedadt Value
P w Elisilan dag s dyathap campRsElREoNPG! PGI PG, PS
~a L'.' e ¥ W ERP W « PTE - LS
deg 3t Hoe
ha P aon b L]
"
H 5 &
(L] []
NP)
L] Tl sl L:l
™ Fiseah W
N Cha dBdHE
Unit Dot Vahe HH oM =
e =30
ars | | ([[— &
ey 1ER | Mangn &
a 2

Tag

BHARS

In the CUSTOMIZE INPUT/OUTPUT tab, you can

Use the Properties tab to change settings of the satellite, ground station, transmitter, receiver,
and link properties from the factory default inputs. You can also add and delete satellite, ground
station, transmitter, receiver, and link input properties. On the Properties tab you can use the
Restore to factory button to load the factory default property configuration in the current app
session.

Use the Results tab to add, delete, and modify formulas used to compute link budget output
results. On the Results tab you can use the Restore to factory button to load the factory default
results configuration in the current app session.

Programmatic Use

satellitelLinkBudgetAnalyzer opens the Satellite Link Budget Analyzer app.

1-10

Satellite Link Budget Analyzer

See Also

Functions
fspl

Objects
satelliteScenario

Topics
“Get Started with Satellite Link Budget Analyzer App”

Introduced in R2021a

1-11

Functions

2 Functions

2-2

ccsdsRSEncode

Encode CCSDS-compliant RS codes

Syntax

code
code
code

ccsdsRSEncode(msg, k)
ccsdsRSEncode(msg, k, 1)
ccsdsRSEncode(msg,k,1,s)

Description

code = ccsdsRSEncode(msg, k) encodes the message in msg by using a (255, k) Reed-Solomon
(RS) encoder, as defined in Consultative Committee for Space Data Systems (CCSDS) 131.0-B-3
Section 4 [1]. k is the message length. code is in dual basis form, as the function assumes that the
input to the CCSDS RS encoder is in dual basis form. For more details on dual basis representation,
see CCSDS 131.0-B-3 Section 4.4.2 [1].

For a description of CCSDS RS code construction, see “CCSDS RS Code Construction” on page 2-5.

code = ccsdsRSEncode(msg, k, i) specifies the interleaving depth, i. msg consists of i RS
message symbols of length k.

code = ccsdsRSEncode(msg, k,i,s) encodes the shortened input message of length s with
interleaving depth 1i.

Examples

Encode Message Using Full-Length CCSDS RS Encoder

Encode a message using a Consultative Committee for Space Data Systems (CCSDS) Reed-Solomon
(RS) encoder.

Specify the message length, k, and the interleaving depth, i.

39;

k =2
i 3;

Generate a column vector of random message symbols. The length of the message is product of
message length, k, and interleaving depth, 1i.

msg = randi([0 255],k*i,1);
size(msg)

ans = 1Ix2

717 1

Encode the message by using CCSDS RS encoder.

code = ccsdsRSEncode(msg,k,1i);

ccsdsRSEncode

Verify that the length of the encoded codeword is 255 times the value of the interleaving depth.
size(code)
ans = 1Ix2

765 1

Encode Shortened Message Using CCSDS RS Encoder

Encode a message using a Consultative Committee for Space Data Systems (CCSDS) Reed-Solomon
(RS) encoder with message shortening.

Specify the message length, k, interleaving depth, i, and the shortened message length, s.
k
i
s

223;
2;
146;

Generate a column vector of random message bits. The length for the shortened message bits is eight
times the product of shortened message length, s, and the interleaving depth, i.

msg = logical(randi([® 1],s*i*8,1));
Encode the shortened message by using a CCSDS RS encoder.
code = ccsdsRSEncode(msg,k,1,s);

Verify that the length of the encoded codeword is equal to (8*1*(255 - k + s).

size(code)
ans = 1Ix2
2848 1

Input Arguments

msg — Input message
column vector of logical bits | column vector of integers in the range [0, 255]

Input message, specified as a column vector of logical bits or a column vector of integers in the range
[0, 255]. The size of the column vector depends on the data type of the input message.

Input Message |Size of msg

Type Data Type of msg Is Data Type of msg Is uint8 or double
logical

Full-length input |8*k k

message

2-3

2 Functions

2-4

Input Message |[Size of msg

Type Data Type of msg Is Data Type of msg Is uint8 or double
logical

Interleaved input |8*¥k*1i k*1i

message

Shortened input |8*s*i s*i

message

Data Types: double | uint8 | logical

k — Message length
223239

Message length, specified as 223 or 239.
Data Types: double

i — Interleaving depth
1 (default) |2|3]4|5]8

Interleaving depth, specified as 1, 2, 3, 4, 5, or 8. The default value, 1, corresponds to no
interleaving.

msg consists of 1 RS message symbols of length k.

Data Types: double

s — Shortened message length
k (default) | integer in the range [1, k]

Shortened message length, specified as an integer in the range [1, k].
Data Types: double
Output Arguments

code — CCSDS RS encoded message
column vector

CCSDS RS encoded message, returned as a column vector. The data type of code is same as that of
the input message, msg. The size of the column vector depends on the data type of the input message.

Input Message |[Size of code

Type Data Type of msg Is Data Type of msg Is uint8 or double
logical

Full length input |8%¥255 255

message

Interleaved input |8*255*%1 255%1

message

Shortened input [8*i*(255- K + s) i*¥(255 -k + s)

message

ccsdsRSEncode

More About
CCSDS RS Code Construction

CCSDS RS codes are powerful burst error-correcting codes used as forward error-correcting (FEC)
codes.

The CCSDS RS encoder accepts full-length or shortened messages.

Construction of Full-Length Message CCSDS RS Codes

For full-length input messages the input column vector length is a product of the interleaving depth
(i) and the message length (k).

Encoding in CCSDS RS codes is done row-wise. The encoding results in an i-by-n vector that includes
parity bits added to the end of each row. n is the codeword length, which is fixed to 255 symbols
according to CCSDS 131.0-B-3 Section 4 [1].

Construction of Shortened Message CCSDS RS Codes

For shortened input messages, the input column vector length is a product of the interleaving depth
(i) and the shortened message length (s). The shortened message vector prepends padding the
beginning of the message vector with zeros. The resulting vector is an i-by-k vector.

Encoding in CCSDS RS codes is done row-wise. The encoding results in an i-by-n vector that includes
parity bits added to the end of each row.

References

[1] TM Synchronization and Channel Coding. Recommendation for Space Data System Standards.
CCSDS 131.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, September 2017.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ccsdsRSDecode

Objects
ccsdsTMWaveformGenerator | comm.RSEncoder

Introduced in R2021a

2-5

2 Functions

2-6

ccsdsRSDecode

Decode CCSDS-complaint RS codes

Syntax

[decoded, cnumerr, ccode]
[decoded, cnumerr, ccode]
[decoded, cnumerr, ccode]

ccsdsRSDecode(code, k)
ccsdsRSDecode(code, k, 1)
ccsdsRSDecode(code, k,1i,s)

Description

[decoded, cnumerr,ccode] = ccsdsRSDecode(code, k) decode the received signal in code by
using a (255, k) Reed-Solomon (RS) decoder with the generator polynomial, as defined in the
Consultative Committee for Space Data Systems (CCSDS) 131.0-B-3 Section 4 [1]. k is the number of
symbols in the decoded message. The function returns the decoded message code, decoded, the
number of corrected errors, cnumerr, and the corrected version of code, ccode.

For a description of CCSDS RS code decoding, see “CCSDS RS Code Decoding” on page 2-9.

[decoded, cnumerr,ccode] = ccsdsRSDecode(code, k, 1) specifies the interleaving depth, 1.
code consists of 1 RS codewords of length 255 bytes.

[decoded, cnumerr,ccode] = ccsdsRSDecode(code, k,i,s) specifies the shortened message
length, s.

Examples

Encode and Decode Full-length CCSDS RS Encoded Message

Generate a full-length encoded Reed-Solomon (RS) codeword, introduce random errors, and decode
the result using a Consultative Committee for Space Data Systems (CCSDS) RS decoder.

Generate a random message of length k.

k = 223;
msg = randi([0 255],k,1);

Encode the message by using a CCSDS RS encoder.
code = ccsdsRSEncode(msg, k) ;
Generate 15 random error symbols and 15 unique random locations to insert these errors.

err = randi([1 255]1,15,1);
errLoc = randperm(255,15);
errVec = zeros(255,1);
errVec(errLoc) = err;

Introduce error symbols in the encoded message.

rxBytes = bitxor(code,errVec);

ccsdsRSDecode

Decode the encoded symbols introduced with errors by using CCSDS RS decoder.
[decoded,v,ccode] = ccsdsRSDecode(rxBytes, k);

Display the number of corrected errors.

disp(v)

15

Decode CCSDS RS Codeword with Burst Errors

Generate an full-length encoded Reed-Solomon (RS) codeword, introduce burst of erros, and decode
the result using a Consultative Committee for Space Data Systems (CCSDS) RS decoder.

Specify the message length k and interleaving depth, i.

k = 239;
i=5

’

Generate a column vector of random message bits. Encode the shortened message by using a CCSDS
RS encoder.

msg = randi([0 255],k*i,1);
code = ccsdsRSEncode(msg,k,1);

Generate 30 random error symbols.

err = randi([1 2551,30,1);
errVec = zeros(255*i,1);

Introduce burst errors from location 52 to 81.

errVec(52:81) = err;
rxBytes = bitxor(code,errVec);

Decode the encoded symbols introduced with burst errors by using a CCSDS RS decoder.

[decoded,v,ccode] = ccsdsRSDecode(rxBytes,k,1i);

Display the number of corrected errors.
disp(v)
30

Input Arguments

code — Encoded message
column vector of integers in the range [0, 255]

Encoded message, specified as a column vector of integers in the range [0, 255].

The elements and the size of the column vector depends on the data type of the input message.

2-7

2 Functions

2-8

» For a logical data type, each element in the vector is either 0 or 1.

» For a uint8 or double data type, each element is an integer symbol in GF(2™), in the range [0,
255]. m is the number of bits in each symbol.

Input Message |Size of code

Type Data Type of code Is Data Type of code Is uint8 or double
logical

Full length input |8*¥255 255

message

Interleaved input |8*¥255*1 255*1

message

Shortened input [8*i*(255 -k + s) i¥(255 -k + s)

message

Data Types: double | uint8 | logical

k — Number of symbols in decoded message
2231239

Number of symbols in the decoded message, specified as 223 or 239.

Data Types: double

i — Interleaving depth
1 (default) [2|3]4|5]8

Interleaving depth, specified as 1, 2, 3, 4, 5, or 8. The default value, 1, corresponds to no
interleaving.

code consists of i RS codewords of length 255 bytes.
Data Types: double

s — Shortened message length
k (default) | integer in the range [1, k]

Shortened message length, specified as an integer in the range [1, k].

Data Types: double

Output Arguments

decoded — Decoded message
column vector

Decoded message, returned as a column vector. Each element represents decoding the corresponding
element in input code. The data type of decoded is the same as that of code.

The size of the column vector depends on the data type of code.

ccsdsRSDecode

Input Message |Size of decoded

Type Data Type of code Is Data Type of code Is uint8 or double
logical

Full length input |8*k k

message

Interleaved input |8*k*1i k*i

message

Shortened input |8*s*i s*i

message

When the value of output cnumerr is —1, decoded is equal to the first k elements of code.

cnumerr — Number of corrected errors
integer in the range [-1, (n - k) / 2]

Number of corrected errors, returned as an integer in the range [-1, (n - k) / 2], where n is the
codeword length. The value of n is set to 255 according to CCSDS 131.0-B-3 Section 4 [1].

A value of —1 in cnumerr indicates the failure of the decoder to correct the errors.

ccode — Corrected version of code
column vector

Corrected version of code, returned as a column vector. The length of ccode is same as the length of
code. The data type of ccode is the same as that of code.

When the value of output cnumerr is —1, ccode is equal to code.

More About

CCSDS RS Code Decoding

CCSDS RS codes are powerful burst error-correcting codes. These are most commonly used as
forward error-correcting (FEC) codes, as they detects and correct errors on the symbol level.

Decoding Full-Length Message CCSDS RS Codes

Like encoding, decoding of CCSDS RS codes is also done row-wise. The input vector length is a
product of interleaving depth (i) and codeword length (n). n is fixed to 255 symbols according to
CCSDS 131.0-B-3 Section 4 [1]. The input vector is composed of message and parity symbols.

Decoding Shortened Message CCSDS RS Codes

Like encoding, the decoding of CCSDS RS codes is also done row-wise. The input vector length is a
product of the interleaving depth (i) and the value calculated by n-k+s. The input vector is composed
of shortened message and parity symbols.

References

[1] TM Synchronization and Channel Coding. Recommendation for Space Data System Standards.
CCSDS 131.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, September 2017.

2-9

2 Functions

2-10

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ccsdsRSEncode

Objects
ccsdsTMwWaveformGenerator | comm.RSDecoder

Introduced in R2021a

dvbs2BitRecover

dvbs2BitRecover

Recover bits for DVB-S2 PL frames

Syntax

[BITS,NUMFRAMESLOST] = dvbs2BitRecover (RXFRAME,NVAR)
[BITS,NUMFRAMESLOST, PKTCRCSTATUS] = dvbs2BitRecover (RXFRAME, NVAR)
[BITS,NUMFRAMESLOST] = dvbs2BitRecover (RXFRAME,NVAR, EARLYTERM)

Description

[BITS,NUMFRAMESLOST] = dvbs2BitRecover (RXFRAME,NVAR) recovers user packets (UPs) or a
continuous data stream, BITS, and the number of lost baseband frames, NUMFRAMESLOST. Input
RXFRAME is the received complex in-phase quadrature (IQ) symbols in the form of physical layer (PL)
frames of a Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission. Input
NVAR is the noise variance estimate, used to calculate soft bits.

[BITS,NUMFRAMESLOST, PKTCRCSTATUS] = dvbs2BitRecover (RXFRAME,NVAR) also returns the
UP cyclic redundancy check (CRC) status.

[BITS,NUMFRAMESLOST] = dvbs2BitRecover (RXFRAME,NVAR, EARLYTERM) uses low-density
parity-check (LDPC) decoding termination criterion, EARLYTERM, to recover data bits, BITS.

Examples

Recover Data Bits from Transport Stream DVB-S2 Transmission

Recover user packets (UPs) for multiple physical layer (PL) frames in a single transport stream
Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file")
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream. Create a DVB-S2 System object.

nFrames = 2;
s2WaveGen = dvbs2WaveformGenerator;

Create the bit vector of information bits, data, of concatenated TS UPs.

syncBits = [0 1000 111]"';
pktLen = 1496;

Sync byte for TS packet is 47 Hex
UP length without sync bits is 1496

%
%

2-11

2 Functions

numPkts = s2WaveGen.MinNumPackets*nFrames;
txRawPkts = randi([0 1],pktLen,numPkts);

txPkts = [repmat(syncBits,1,numPkts); txRawPkts];
data = txPkts(:);

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = s2WaveGen.SamplesPerSymbol;

EsNodB = 1;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, 'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',s2WaveGen.RolloffFactor,
'"InputSamplesPerSymbol',sps, ...
'DecimationFactor',sps);
s = coeffs(rxFilter);
rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove the filter delay.

filtOut
rxFrame

rxFilter(rxIn);
filtOut(rxFilter.FilterSpanInSymbols+1l:end);

Recover UPs. Display the number of frames lost and the UP cyclic redundancy check (CRC) status.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame, 10~ (-EsNodB/10));
disp(FramesLost)

0
disp(pktCRCStat)
{20x1 logical}

Recover Data Bits from Generic Stream DVB-S2 Transmission with Early Termination
Enabled

Recover user bits in a multi-input generic stream (GS) Digital Video Broadcasting Satellite Second
Generation (DVB-S2) transmission with variable modulation and coding scheme.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file')
if ~exist('s2xLDPCParityMatrices.zip', 'file"')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');

2-12

dvbs2BitRecover

end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

nFrames = 1;

Create a DVB-S2 System object with variable coding and modulation configuration for a multi-input
GS. Specify the modulation scheme and forward error correction (FEC) rate (MODCOD) and the data
field length (DFL).

s2WaveGen = dvbs2WaveformGenerator;

s2WaveGen.StreamFormat = "GS";

s2WaveGen.NumInputStreams = 3;

s2WaveGen.MODCOD = [10 15 6]; % QPSK 8/9, 8PSK 5/6, and QPSK 2/3
s2WaveGen.DFL = [44500 51387 42960];

Create a bit vector of input information bits for each input stream.

data = cell(s2WaveGen.NumInputStreams,1);
for i = 1l:s2WaveGen.NumInputStreams

data{i} = randi([0 1],s2WaveGen.DFL(i)*nFrames,1);
end

Generate the DVB-S2 time-domain waveform with the input information bits. Flush the transmit filter
to handle the filter delay and recover the complete frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform. Specify the samples per
symbol for the baseband filter.

sps = s2WaveGen.SamplesPerSymbol;

EsNodB = 10;

snrdB = EsNodB - 10*logl@(sps);

rxIn = awgn(txWaveform,snrdB, 'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(..
'RolloffFactor',s2WaveGen.RolloffFactor,
"InputSamplesPerSymbol',sps, ...
'DecimationFactor',sps);

s = coeffs(rxFilter);

rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove the filter delay.

filtOut
rxFrame

rxFilter(rxIn);
filtOut(rxFilter.FilterSpanInSymbols+1l:end);

Recover user bits. Enable early termination of the low-density parity-codes (LDPC) decoder.
[bits,FramesLost] = dvbs2BitRecover(rxFrame,10”™(-EsNodB/10),1);

Display the number of frames lost and the number of bit errors in each stream.

fprintf('Number of frames lost = %d\n',FramesLost)

2-13

2 Functions

Number of frames lost = 0

for i = 1l:s2WaveGen.NumInputStreams
fprintf('Number of bit errors in stream %d = %d\n',1i,
sum(data{i}~=bits{i}))
end

Number of bit errors in stream 1
Number of bit errors in stream 2
Number of bit errors in stream 3

L ||
[ocNoNO]

Recover Data Bits from Transport Stream DVB-S2 Transmission with ISSYI Enabled

Recover user packets (UPs) in a multi-input transport stream (TS) Digital Video Broadcasting Satellite
Second Generation (DVB-S2) transmission with constant coding and modulation.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file')
if ~exist('s2xLDPCParityMatrices.zip','file"')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.
numFrames = 1;

Create a DVB-S2 System object with constant coding and modulation configuration for a multi-input
TS. Specify a short forward error correction (FEC) frame format and enable the input stream
synchronization (ISSY).

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 3;

s2WaveGen.FECFrame = "short";
s2WaveGen.MODCOD = 10; % QPSK 8/9
s2WaveGen.DFL = 13920;
s2WaveGen.ISSYI = true;

Create a bit vector of information bits of concatenated TS UPs.

syncBits = [0 1 000 111]"'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1,s2WaveGen.NumInputStreams);
for i = 1l:s2WaveGen.NumInputStreams
numPkts = s2WaveGen.MinNumPackets (i)*numFrames;
txRawPkts = randi([0 1],pktLen,numPkts);
ISSY = randi([0 1],16,numPkts); % ISCRFormat is 'short' by default
% 'short' implies the default length of ISSY as 2 bytes
txPkts = [repmat(syncBits,1l,numPkts); txRawPkts; ISSY]; % ISSY is appended at the end of UP
data{i} = txPkts(:);
end

2-14

dvbs2BitRecover

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform. Specify the samples per
symbol for the baseband filter.

sps = s2WaveGen.SamplesPerSymbol;

EsNodB = 12;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn (txWaveform,snrdB, 'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',s2WaveGen.RolloffFactor,
'"InputSamplesPerSymbol',sps, ...
'DecimationFactor', sps);

s = coeffs(rxFilter);

rxFilter.Gain = sum(s.Numerator);

Apply matched filtering and remove filter delay.

filtOut
rxFrame

rxFilter(rxIn);
filtOut(rxFilter.FilterSpanInSymbols+1l:end);

Recover UPs. Display the number of frames lost and the number of bit errors in each stream.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame,10”(-EsNodB/10));
fprintf('Number of frames lost = %d\n',FramesLost)

Number of frames lost = 0

for i = 1l:s2WaveGen.NumInputStreams
fprintf('Number of bit errors in stream %d = %d\n',1i,
numel (pktCRCStat{i})-sum(pktCRCStat{i}))

end

Number of bit errors in stream 1
Number of bit errors in stream 2
Number of bit errors in stream 3

I n
[ocNoNo)

Input Arguments

RXFRAME — Received 1Q symbols from PL frames of DVB-S2 transmission
column vector

Received IQ symbols from PL frames of a DVB-S2 single-input or multi-input transmission, specified
as a column vector. RXFRAME can contain one or multiple PL frames.

The length of RXFRAME depends on the value of the properties FECFrame, MODCOD, and HasPilots
of the dvbs2WaveformGenerator System object™.

Data Types: double
Complex Number Support: Yes

2-15

2 Functions

2-16

NVAR — Noise variance estimate
nonnegative scalar

Noise variance estimate that the function adds to the input IQ symbols, specified as a nonnegative
scalar. NVAR is used as a scaling factor to calculate the soft bits from the IQ symbols.

When you specify NVAR as 0, the function uses a value of 1e-5, which corresponds to a signal-to-noise
ratio (SNR) of 50 dB.

Data Types: double

EARLYTERM — Flag for early termination of LDPC decoder
0 or false (default) | 1 or true

Flag for early termination of the LDPC decoder when all parity-checks are satisfied, specified as a set
logical 1 (true) or 0 (false). When set to 1 (true), the LDPC decoder is terminated when all parity
checks are satisfied.

When you set this value to 0 (false), the maximum decoding iteration limit is 50.

Data Types: logical

Output Arguments

BITS — Recovered data bits
cell array of column vectors

Recovered data bits, returned as a cell array of column vectors. Each element of the cell array is of
data type int8. This output can be either UPs or generic data stream, depending of the
StreamFormat property of the dvbs2WaveformGenerator System object.

For a multi-input stream transmission, each element of the cell array corresponds to an individual
input stream.

Data Types: cell

NUMFRAMESLOST — Number of lost baseband frames
nonnegative integer

Number of lost baseband frames, returned as a nonnegative integer. If the baseband header CRC
fails, the frame is considered lost.

Data Types: double

PKTCRCSTATUS — UP CRC status
cell array of column vectors

UP CRC status, returned as a cell array of column vectors. Each element of the cell array is of data
type logical. For a multi-input stream transmission, each element of the cell array corresponds to
an individual input stream.

Dependencies

PKTCRCSTATUS applies for only the input streams where the value of the UPL property of
dvbs2WaveformGenerator System object is nonzero.

Data Types: cell

dvbs2BitRecover

References

[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dvbs2WaveformGenerator

Introduced in R2021a

2-17

2 Functions

p618PropagationLosses

Calculate Earth-space propagation losses, cross-polarization discrimination, and sky noise
temperature

Syntax

[pl,xpd, tskyl
[pl,xpd, tskyl

p618PropagationLosses(p618cfg)
p618PropagationlLosses(p618cfg,Name,Value)

Description

[pl,xpd,tsky] = p6l8PropagationLosses(p618cfg) returns Earth-space propagation losses
pl, cross-polarization discrimination xpd, and sky noise temperature tsky, as defined in the ITU-R
P.618 recommendation [1]. p618cfg specifies the P.618 configuration parameters.

This function requires MAT-files with digital maps from International Telecommunication Union (ITU)
documents. If they are not available on the path, download and uncompress the data files from
https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz to a location on the
MATLAB path.

[pl,xpd,tsky] = p618PropagationLosses(p618cfg,Name,Value) specifies additional
options using one or more name-value pair arguments.

Examples

Calculate Propagation Losses, Cross-Polarization Discrimination, and Sky Noise
Temperature

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.
if ~exist('ITURDigitalMaps.tar.gz', 'file')
url = "https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
websave('ITURDigitalMaps.tar.gz',url);

untar('ITURDigitalMaps.tar.gz"');
end

Create a default P.618 configuration object.
cfg = p618Config;

Specify the time percentage of excess for the rain attenuation per annum as 0.01 and the time
percentage of excess for the total attenuation per annum as 0.001.

cfg.RainAnnualExceedance = 0.01;
cfg.TotalAnnualExceedance = 0.001;

Calculate the propagation losses, cross-polarization discrimination, and sky noise temperature.

[pl,xpd,tsky] = p618PropagationLosses(cfg)

2-18

https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz

p618PropagationLosses

pl = struct with fields:

Ag: 0.2269
Ac: 0.4552
Ar: 6.7981
As: 0.2633
At: 15.6091

xpd = 32.8876
tsky = 267.4689

Calculate Earth-space Propagation Losses Using Name-Value Pair Arguments

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.
if ~exist('ITURDigitalMaps.tar.gz','file')
url = "https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz"';
websave('ITURDigitalMaps.tar.gz',url);

untar('ITURDigitalMaps.tar.gz"');
end

Create a P618 configuration object with a signal frequency of 20 GHz.

cfg = p618Config('Frequency',20e9);

Specify the surface water vapor density as 2.8%, the total columnar content of the cloud liquid water
m

as 1.4 k—%, and the median value of the wet surface refractivity as 1.2. Set the earth station height as
m
0.5 km. Calculate the Earth-space propagation losses.

pl = p6l8PropagationLosses(cfg, 'StationHeight',0.5,...
'WaterVaporDensity',2.8, ...
'TotalColumnarContent',1.4,...
'WetSurfaceRefractivity',1.2)

pl = struct with fields:

Ag: 0.8649
Ac: 1.0987
Ar: 0.8907
As: 0.1372
At: 2.8590

Calculate Propagation Losses in Light Rainfall

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz";

2-19

2 Functions

2-20

websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz"');
end
Create a P618 configuration object that occupies a signal frequency of 20 GHz.
cfg = p618Config('Frequency',20e9);
Calculate the propagation losses in a light rainfall of 1 mm/hr with an earth station height of 0.75 km.

pl = p618PropagationLosses(cfg, 'RainRate’',1, 'StationHeight',0.75)

pl = struct with fields:

Ag: 0.7996
Ac: 0.8793
Ar: 0.0177
As: 0.3187
At: 1.7514

Input Arguments

p618cfg — P.618 configuration
p618Config object

P.618 configuration required for the calculation of the propagation losses, cross-polarization
discrimination, and sky noise temperature, specified as a p618Config object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'StationHeight',1.5 specifies the earth station height as 1.5 km.

StationHeight — Height of earth station
nonnegative scalar

Height of the earth station above the mean sea level in km, specified as the comma-separated pair
consisting of 'StationHeight' and a nonnegative scalar. The maximum supported value is 100. If the
local data is not available as an input, the function uses the digital maps provided in ITU-R P1511
section 1, Annex 1 [3] to obtain the station height value.

Data Types: double | single

Temperature — Temperature of earth surface
nonnegative scalar

Temperature of the earth surface in kelvin, specified as the comma-separated pair consisting of
'Temperature' and a nonnegative scalar. If the local data is not available as an input, the function
uses the map of the mean annual surface temperature provided in ITU-R P.1510 section 1, Annex 1 [4]
to obtain the temperature value.

Data Types: double | single

p618PropagationLosses

Pressure — Dry air pressure at earth surface
nonnegative scalar

Dry air pressure at the earth surface in hPa, specified as the comma-separated pair consisting of
'Pressure' and a nonnegative scalar. If the local data is not available as an input, the function uses
the mean annual global reference atmosphere provided in ITU-R P.835 section 1.1, Annex 1 [5] to
obtain the air pressure value.

Data Types: double | single

WaterVaporDensity — Surface water vapor density
nonnegative scalar

Surface water vapor density in g/m3, specified as the comma-separated pair consisting of
'WaterVaporDensity' and a nonnegative scalar. If the local data is not available as an input, the
function uses the digital maps provided in ITU-R P.836 section 1, Annex 1 [6] to estimate the value of
the water vapor density.

Data Types: double | single

IntegratedwWaterVaporContent — Integrated water vapor content
positive scalar

Integrated water vapor content exceeded for the percentage of GasAnnualExceedance in an average
year, specified as the comma-separated pair consisting of 'IntegratedWaterVaporContent'and a
positive scalar. Units are in kg/m? or mm. If the local data is not available as an input, the function
uses the digital maps provided in ITU-R P.836 section 1, Annex 2 [6] to obtain the value of the
integrated water vapor content.

Data Types: double | single

TotalColumnarContent — Total columnar content of cloud liquid water
nonnegative scalar

Total columnar content of the cloud liquid water exceeded for the percentage of
CloudAnnualExceedance in an average year, specified as the comma-separated pair consisting of
'TotalColumnarContent' and a nonnegative scalar. Units are in kg/m? or mm. If the local data is
not available as an input, the function uses the digital maps provided in ITU-R P.840 section 3.1,
Annex 1 [7] to obtain the value of the total columnar content.

Data Types: double | single

RainRate — Point rainfall rate
nonnegative scalar

Point rainfall rate at the location for 0.01% of an average year, specified as the comma-separated pair
consisting of 'RainRate' and a nonnegative scalar. Units are in mm/hr. If the local data is not
available as an input, the function uses the digital maps provided in ITU-R P.837, Annex 1 [8] to
obtain the value of the point rainfall rate.

Data Types: double | single

WetSurfaceRefractivity — Median value of wet term of surface refractivity
nonnegative scalar

Median value of the wet term of the surface refractivity, specified as the comma-separated pair
consisting of 'WetSurfaceRefractivity' and a nonnegative scalar. If the local data is not available

2-21

2 Functions

as an input, the function uses the digital maps provided in ITU-R P453 section 2.2, Annex 1 [9] to
obtain the value of the wet surface refractivity.

Data Types: double | single

MeanRadiatingTemperature — Atmospheric mean radiating temperature
nonnegative scalar

Atmospheric mean radiating temperature in kelvin, specified as the comma-separated pair consisting
of 'MeanRadiatingTemperature' and a nonnegative scalar. If the local data is not available as an
input, the function uses an atmospheric mean radiating temperature of 275 K in the computation.

Data Types: double | single

Output Arguments

pl — Earth-space propagation losses information
structure

Earth-space propagation losses information, returned as a structure containing these fields.

Fields Description

At Total atmospheric attenuation (in dB)

Ag Gaseous attenuation (in dB)

Ac Cloud and fog attenuation (in dB)

Ar Rain attenuation (in dB)

As gttenuation due to tropospheric scintillation (in
B)

xpd — Cross-polarization discrimination
scalar

Cross-polarization discrimination in (dB) not exceeded for the percentage of the
RainAnnualExceedance, returned as a scalar.

tsky — Sky noise temperature
nonnegative scalar

Sky noise temperature (in kelvin) at the ground station antenna, returned as a nonnegative scalar.

References

[1] International Telecommunication Union, ITU-R Recommendation P618 (12/2017).
[2] International Telecommunication Union, ITU-R Recommendation P676 (08/2019).
[3] International Telecommunication Union, ITU-R Recommendation P1511 (08/2019).
[4] International Telecommunication Union, ITU-R Recommendation P1510 (06/2017).
[5] International Telecommunication Union, ITU-R Recommendation P.835 (12/2017).

[6] International Telecommunication Union, ITU-R Recommendation P.836 (12/2017).

2-22

p618PropagationLosses

[7] International Telecommunication Union, ITU-R Recommendation P.840 (08/2019).
[8] International Telecommunication Union, ITU-R Recommendation P837 (06/2017).
[9] International Telecommunication Union, ITU-R Recommendation P453 (08/2019).
[10] International Telecommunication Union, ITU-R Recommendation P.839 (09/2013).

[11] International Telecommunication Union, ITU-R Recommendation P838 (03/2005).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Supports only MEX code generation.

See Also

Objects
p618Config | p618SiteDiversityConfig

Functions
p618SiteDiversityQutage

Introduced in R2021a

2-23

2 Functions

2-24

p618SiteDiversityOutage

Calculate outage probability due to rain attenuation with site diversity

Syntax

Outage
Outage

p618SiteDiversityOutage(cfgsd)
p618SiteDiversityQutage(cfgsd,Name,Value)

Description

Outage = p618SiteDiversityOutage(cfgsd) returns the outage probability due to rain
attenuation with site diversity. The function calculates this value as per the ITU-R P618
recommendation [1].

This function requires MAT-files with digital maps from International Telecommunication Union (ITU)
documents. If they are not available on the path, download and uncompress the data files from
https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz to a location on the
MATLAB path.

OQutage = p618SiteDiversityOutage(cfgsd,Name,Value) specifies additional options using
one or more name-value pair arguments.

Examples

Calculate Outage Probability due to Rain Attenuation with Site Diversity

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and untar the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')
url = "https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz"';
websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz');

end

Create a P618 site diversity configuration object with a signal frequency of 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

cfgsd.PolarizationTiltAngle = [-90 90];

cfgsd.SiteDistance = 50;

cfgsd.AttenuationThreshold = [9 9];

Calculate the outage probability due to rain attenuation with site diversity.

outage = p618SiteDiversityOutage(cfgsd)

https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz

p618SiteDiversityOutage

outage = 0.0338

Calculate Outage Probability with Site Diversity Using Name-Value Pair Arguments

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute these commands to download and untar the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz');

end

Create a default P618 site diversity configuration object. Change the signal frequency to 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

Specify the separation between two sites as 50 km and the attenuation threshold on the two links as
[9 9] dB.

cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

Calculate the outage probability for the specified site diversity configuration.

outage p618SiteDiversityQutage(cfgsd, 'RainAnnualExceedances',[0.01 0.05 0.2],...

'RainProbabilityl',0.3,...
'RainProbability2',0.5)

outage = 0.0339

Input Arguments

cfgsd — P.618 site diversity configuration
p618SiteDiversityConfig object

P.618 site diversity configuration required for the calculation of the outage probability due to rain
attenuation, specified as a p618SiteDiversityConfig object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'RainAnnualExceedances',[0.01 0.02 0.03 0.05] specifies the average annual
time percentage of excess for the rain attenuation.

RainAnnualExceedances — Average annual time percentage of excess for rain attenuation
nonnegative vector

2-25

2 Functions

2-26

Average annual time percentage of excess for the rain attenuation, specified as the comma-separated
pair consisting of 'RainAnnualExceedances' and a nonnegative vector. The values in this vector
must be less than the probability of rain at the two sites.

If the local data is not available as an input, the function uses [0.01 0.02 0.03 0.05 0.1 0.2
0.3 0.5 1 2 3 5] as the default vector.

Data Types: double | single

RainAttenuationsl — Rain attenuations at site 1
nonnegative vector

Rain attenuations (in dB) at site 1, specified as the comma-separated pair consisting of
'RainAttenuationsl’' and a nonnegative vector. This value specifies the rain attenuation exceeded
for the percentages given in the RainAnnualExceedances name-value pair argument. The
dimension of this value must match that of the RainAnnualExceedances.

If the local data is not available as an input, the function uses the method as defined in section 2.2.1.1
of the ITU-R P.618 [1] recommendation to calculate the rain attenuations for site 1.

Note If you do not specify RainAttenuationsl, then RainAnnualExceedances must be in the
range from 0.01% to 5%.

Data Types: double | single

RainAttenuations2 — Rain attenuations at site 2
nonnegative vector

Rain attenuations (in dB) at site 2, specified as the comma-separated pair consisting of
'RainAttenuations2' and a nonnegative vector. This value specifies the rain attenuation exceeded
for the percentages given in the RainAnnualExceedances name-value pair argument. The
dimension of this value must match that of the RainAnnualExceedances.

If the local data is not available as an input, the function uses the method as defined in section 2.2.1.1
of the ITU-R P.618 recommendation to calculate the rain attenuations for site 2.

Note If you do not specify RainAttenuations2, then RainAnnualExceedances must be in the
range from 0.01% to 5%.

Data Types: double | single

RainProbabilityl — Probability of rain for site 1
nonnegative scalar

Probability of (in %) rain for site 1, specified as the comma-separated pair consisting of
'RainProbabilityl’' and a nonnegative scalar.

If the local measured rainfall rate data is not available as an input, the function uses the digital maps
as defined in ITU-R P837 Annex 1 [2] to calculate the rain probability for the sites.

Data Types: double | single

p618SiteDiversityOutage

RainProbability2 — Probability of rain for site 2
nonnegative scalar

Probability of (in %) rain for site 2, specified as the comma-separated pair consisting of
'RainProbability2' and a nonnegative scalar.

If the local measured rainfall rate data is not available as an input, the function uses the digital maps
as defined in ITU-R P.837 Annex 1 [2] to calculate the rain probability for the sites.

Data Types: double | single

Output Arguments

Outage — Outage probability due to rain attenuation with site diversity
nonnegative scalar

Outage probability due to rain attenuation with site diversity, returned as a nonnegative scalar. This
argument predicts the joint probability (P.(A;= a;, A, = a,)), where the attenuation on the path of the
site 1 must exceed a; and the attenuation on the path of the site 2 must exceed a,.

References

[1] International Telecommunication Union, ITU-R Recommendation P618 (12/2017).
[2] International Telecommunication Union, ITU-R Recommendation P837 (06/2017).
[3] International Telecommunication Union, ITU-R Recommendation P1511 (08/2019).
[4] International Telecommunication Union, ITU-R Recommendation P1510 (06/2017).
[5] International Telecommunication Union, ITU-R Recommendation P836 (12/2017).
[6] International Telecommunication Union, ITU-R Recommendation P.840 (08/2019).
[7] International Telecommunication Union, ITU-R Recommendation P453 (08/2019).
[8] International Telecommunication Union, ITU-R Recommendation P.839 (09/2013).

[9] International Telecommunication Union, ITU-R Recommendation P.838 (03/2005).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Supports only MEX code generation.

See Also

Objects
p618Config | p618SiteDiversityConfig

2-27

2 Functions

Functions
p618PropagationLosses

Introduced in R2021a

2-28

ccsdsTCWaveform

ccsdsTCWaveform

Generate CCSDS TC waveform

Syntax

waveform = ccsdsTCWaveform(bits,cfgFormat)
[waveform,encodedBits] = ccsdsTCWaveform(bits,cfgFormat)

Description

waveform = ccsdsTCWaveform(bits,cfgFormat) generates a Consultative Committee for
Space Data Systems (CCSDS) Telecommand (TC) time-domain waveform, waveform, for the
corresponding input bits, bits, and the given format configuration, cfgFormat.

[waveform,encodedBits] = ccsdsTCWaveform(bits,cfgFormat) also returns the bits
obtained after TC synchronization and channel coding sublayer operations.

Examples

Create CCSDS TC Waveform for Multiple CLTUs

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for multiple communications link transmission units (CLTUs).

Create a default CCSDS TC configuration object.

cfg = ccsdsTCConfig;
disp(cfqg)

ccsdsTCConfig with properties:

DataFormat: "CLTU"
ChannelCoding: "BCH"
HasRandomizer: 1

Modulation: "PCM/PSK/PM"

PCMFormat: "NRZ-L"
ModulationIndex: 0.4000
SubcarrierFrequency: 16000
SymbolRate: 4000
SamplesPerSymbol: 10

Read-only properties:
SubcarrierWaveform: "sine"

Specify the number of CLTUs and the transfer frame length.

numCLTUs = 10;
transferFramesLength = 8; % Number of octets in each transfer frame

Generate the CCSDS TC time-domain waveform for the transfer frames.

2-29

2 Functions

¢ = cell(1,numCLTUs); % Cell array to store the generated waveform for all CLTUs
for k=1:numCLTUs
bits = randi([0 1],8*transferFramesLength,1); % Bits in the TC transfer frame
waveform = ccsdsTCWaveform(bits,cfg);
c{1,k} = waveform; % Waveform for each CLTU
end

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of the generated
CCSDS TC time-domain waveform from the last CLTU.

scope = dsp.SpectrumAnalyzer;
scope.SampleRate = cfg.SamplesPerSymbol*cfg.SymbolRate;
scope(waveform) % Last CLTU spectrum display

Y o || = R

File Tools Wiew Playback Help o

- - & XN |G

Processing REW=39.063 Hz Sample rate=40kHz | T=0

Create CCSDS TC Waveform for Acquisition Sequence

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for a acquisition sequence with 20 octets.

Create a CCSDS TC configuration object, and then specify the object properties. Display the object
properties.

2-30

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

ccsdsTCWaveform

cfg = ccsdsTCConfig;

cfg.DataFormat = "acquisition sequence";
cfg.Modulation = "PCM/PM/biphase-L";
cfg.ModulationIndex = 1.2;

disp(cfg)

ccsdsTCConfig with properties:

DataFormat: "acquisition sequence"

Modulation: "PCM/PM/biphase-L"
ModulationIndex: 1.2000
SamplesPerSymbol: 10

Read-only properties:
No properties.

Generate the CCSDS TC waveform.

bits = repmat([0;1],8*10,1); % Alternating 1s and 0s with Os as a starting sequence bit
waveform = ccsdsTCWaveform(bits,cfg);

Input Arguments

bits — Information bits
binary-valued column vector

Information bits, specified as a binary-valued column vector.

* When you set the DataFormat property of the ccsdsTCConfig object to "CLTU", the length of
this vector must be an integer multiple of 8.

* When you set the DataFormat property of the ccsdsTCConfig object to "acquisition
sequence" or "idle sequence", this vector must be a sequence of alternating 1s and Os,
starting with either 1 or 0.

Data Types: double | int8 | logical

cfgFormat — Format configuration object
ccsdsTCConfig object

Format configuration object, specified as ccsdsTCConfig object. The properties of this object define
the parameters required for CCSDS TC waveform generation.

Output Arguments

waveform — Generated time-domain CCSDS TC waveform
column vector

Generated time-domain CCSDS TC waveform, returned as a column vector. The waveform output is
generated in the form of complex in-phase quadrature (IQ) samples.

Data Types: double

encodedBits — Output bits obtained after TC synchronization and channel coding sublayer
operations
column vector

2-31

2 Functions

2-32

Output bits obtained after TC synchronization and channel coding sublayer operations, returned as a
column vector.

Data Types: double

References

[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."
Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ccsdsTCIdealReceiver

Objects
ccsdsTCConfig | ccsdsTMWaveformGenerator

Introduced in R2021a

ccsdsTCldealReceiver

ccsdsTCldealReceiver

Ideal receiver for CCSDS TC waveform

Syntax

bits
bits

ccsdsTCIdealReceiver(waveform,cfg)
ccsdsTCIdealReceiver(waveform, cfg,Name,Value)

Description

bits = ccsdsTCIdealReceiver(waveform, cfg) recovers transfer frames from a Consultative
Committee for Space Data Systems (CCSDS) Telecommand (TC) waveform, generated using the
ccsdsTCWaveform function. Output bits is the recovered bits for the given format configuration
cfg.

bits = ccsdsTCIdealReceiver(waveform,cfg,Name,Value) specifies options using one or
more name-value pairs. For example, 'NoiseVariance', le-11 specifies the noise variance of
additive white Gaussian noise (AWGN) on the received waveform as le-11.

Examples

Recover Transfer Frame from CCSDS TC Waveform

Recover the transfer frame from the Consultative Committee for Space Data Systems (CCSDS)
Telecommand (TC) waveform.

Create a CCSDS TC object and specify the object properties.

cfg = ccsdsTCConfig;
cfg.HasRandomizer = 1;
cfg.SamplesPerSymbol = 12;
disp(cfg)

ccsdsTCConfig with properties:

DataFormat: "CLTU"
ChannelCoding: "BCH"
HasRandomizer: 1

Modulation: "PCM/PSK/PM"

PCMFormat: "NRZ-L"
ModulationIndex: 0.4000
SubcarrierFrequency: 16000
SymbolRate: 4000
SamplesPerSymbol: 12

Read-only properties:
SubcarrierWaveform: "sine"

Specify the transfer frame length and generate the CCSDS TC waveform for the transfer frame.

2-33

2 Functions

2-34

transferFrameLength = 12; % Number of octets in each transfer frame
data = randi([0 1],8*transferFrameLength,1l); % bits in the transfer frame
waveform = ccsdsTCWaveform(data,cfg);

Recover the transfer frame from the CCSDS TC waveform

decodedBits = ccsdsTCIdealReceiver(waveform,cfg, 'DecodingMode’,"error detecting");

Check if the transfer frame is recovered successfully.

rxBits = decodedBits{1};
bits = rxBits((1l:8*transferFrameLength)');
isequal(bits,data)

ans = logical
1

Input Arguments

waveform — Received time-domain signal
column vector

Received time-domain signal, consisting of complex in-phase quadrature (IQ) samples, specified as a
column vector. The waveform input is a CCSDS TC waveform.

A CCSDS TC waveform can contain one or more communications link transmission units (CLTUs).
Each CLTU can contain one or more transfer frames.

Data Types: single | double
Complex Number Support: Yes

cfg — Format configuration object
ccsdsTCConfig object

Format configuration object, specified as ccsdsTCConfig object. The properties of this object
determine the parameters required for CCSDS TC waveform generation and reception.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: ccsdsTCIdealReceiver(waveform,cfg, 'NoiseVariance', le-11) specifies the
noise variance of AWGN on the received waveform as le-11.

NoiseVariance — Noise variance of AWGN
le-10 (default) | positive scalar

Noise variance of AWGN that is added to the input IQ symbols of the waveform, specified as a
positive scalar.

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "LDPC".

ccsdsTCldealReceiver

Data Types: double

DecodingMode — Decoding mode
"error correcting"” (default) | "error detecting"

Decoding mode to decode the Bose Chaudhuri Hocquenghem (BCH) encoded codewords, specified as
"error correcting" or "error detecting".

'DecodingMode’ defines the allowed number of errors in the start sequence of the CLTU. In error
detecting mode, the allowed number of errors in the start sequence is zero. In error correcting mode,
the allowed number of errors in the start sequence is one.

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "BCH".
Data Types: char | string

DetectionThreshold — Threshold to detect start sequence
0.7 (default) | scalar in the range [0.5, 1]

Threshold to detect the start sequence, by calculating the normalized correlation metric with the
known start sequence, specified as a scalar in the range [0.5, 1]. When the computed normalized
correlation metric is greater than or equal to 'DetectionThreshold’, the start sequence of the
CLTU is detected.

Dependencies

To enable this name-value pair, set the ChannelCoding property of the cfg input to "LDPC".
Data Types: double

Output Arguments

bits — Recovered transfer frames
cell array of column vectors

Recovered transfer frames, returned as a cell array of column vectors. Each element of the cell array
is of data type int8.

Bits in the cell array of one or more column vectors, corresponds to the number of CLTUs present in
the waveform input. Recovered transfer frames of CLTUs can contain fill bits. The fill bits removal
procedure is not performed in the TC synchronization and channel coding sublayer.

Data Types: int8 | cell

References

[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."
Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

2-35

2 Functions

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ccsdsTCWaveform

Objects
ccsdsTCConfig

Introduced in R2021a

2-36

info

info
Characteristic information about object

Syntax

s = info(obj)

Description

s = info(obj) returns a structure containing the characteristic information of the specified input
object obj.

Examples

Get DVB-S2 Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2WaveformGenerator System object by using the info function. Then
retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file')
if ~exist('s2xLDPCParityMatrices.zip', 'file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 1;

Create a Digital Video Broadcasting standard (DVB-S2) System object, and then specify its properties.

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [21 16];
s2WaveGen.DFL 47008;
s2WaveGen.ISSYI = true;
s2WaveGen.SamplesPerSymbol = 2;
disp(s2WaveGen)

dvbs2WaveformGenerator with properties:

StreamFormat: "TS"
NumInputStreams: 2
FECFrame: "normal"
MODCOD: [21 16]

2-37

2 Functions

2-38

DFL: 47008
ScalingMethod: "outer radius as 1"
HasPilots: O
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 2
ISSYI: true
ISCRFormat: "short"

Show all properties

Get the characteristic information about the DVB-S2 waveform generator.
info(s2WaveGen)

ans = struct with fields:
ModulationScheme: {'16APSK' '8PSK'}
LDPCCodeIdentifier: {'5/6' '8/9'}

Create the bit vector of input information bits, data, of concatenated TS user packets.

syncBits = [0 1 000 111]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1,s2WaveGen.NumInputStreams);
for i = 1:s2WaveGen.NumInputStreams

numPkts = s2WaveGen.MinNumPackets (i)*numFrames;

txRawPkts = randi([0 1], pktLen,numPkts);

ISSY = randi([0 11,16, numPkts); % ISCRFormat is 'short' by default

% 'short' implies the default length of ISSY as 2 bytes

txPkts = [repmat(syncBits,1,numPkts);txRawPkts;ISSY]; % ISSY is appended at the end of UP

data{i} = txPkts(:);
end

Generate a DVB-S2 time-domain waveform using the information bits.
txWaveform = [s2WaveGen(data)];

Check the filter residual data samples that remain in the filter delay.
flushFilter(s2WaveGen)

ans = 20x1 complex

0.0153 + 0.4565i
0.2483 + 0.5535i
0.3527 + 0.3972i
0.3541 - 0.08551
0.3505 - 0.4071i
0.4182 - 0.1962i
0.5068 + 0.06361
0.4856 - 0.1532i
0.3523 - 0.41531i
0 0.22631

.1597 -

info

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file")
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();

s2xWaveGen.HasTimeSlicing = true;

s2xWaveGen.NumInputStreams = 2;

s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];

s2xWaveGen.PLScramblingIndex = [0 1];

disp(s2xWaveGen)

dvbs2xWaveformGenerator with properties:

StreamFormat: "TS"
HasTimeSlicing: true
NumInputStreams: 2
PLSDecimalCode: [135 145]
DFL: [18048 446561
PLScramblingIndex: [0 1]
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 4
ISSYI: false

Show all properties

Get the characteristic information about the DVB-S2X waveform generator.
info(s2xWaveGen)
ans = struct with fields:

FECFrame: {'normal' ‘'normal'}

ModulationScheme: {'QPSK' '8PSK'}
LDPCCodeIdentifier: {'9/20' '25/36'}

2-39

2 Functions

2-40

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 000 111]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(l, s2xWaveGen.NumInputStreams);

for i = 1l:s2xWaveGen.NumInputStreams
numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
txRawPkts = randi([0 1], pktLen, numPkts);
txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
data{i} = txPkts(:);

end

Generate a DVB-S2X time-domain waveform using the information bits.
txWaveform = s2xWaveGen(data);

Check the filter residual data samples that remain in the filter delay.
flushFilter(s2xWaveGen)

ans = 40x1 complex

-0.2412 - 0.01431
-0.2619 - 0.08611
-0.2726 - 0.13371
-0.2511 - 0.15971
-0.1851 - 0.16801
-0.0780 - 0.16021
0.0448 - 0.1288i
0.1598 - 0.0751i
0.2482 - 0.0049i
0 0.07021

.3026 +

Get DVB-RCS2 Waveform Generator Information

Get information from a dvbrcs2WaveformGenerator System object by using the info object
function.

Create a DVB-RCS2 System object, and then specify its properties.

wg = dvbrcs2WaveformGenerator;
wg.ContentType = "control";
wg.WaveformID = 33;
wg.FilterSpanInSymbols = 12;
disp(wg)

dvbrcs2WaveformGenerator with properties:

TransmissionFormat: "TC-LM"
ContentType: "control"
IsCustomWaveform: false
WaveformID: 33
PreBurstGuardLength: 0

info

PostBurstGuardLength: 0
12
SamplesPerSymbol: 4

FilterSpanInSymbols:

Use get to show all properties

Get the characteristic information about the DVB-RCS2 waveform generator.

info(wg)

ans = struct with fields:

BurstLength:
PayloadLengthInBytes:
MappingScheme:
CodeRate:
PreambleLength:
PostamblelLength:
PilotPeriod:
PilotBlockLength:
PermutationParameters:
UniqueWord:

PilotSum:

566

100

"QPSK"

"3/4"

32

0

0

0

[23 10 8 2 1]
"0OC330COFF3F3033F"
0

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;

tmwWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;

tmWaveGen.Modulation = "QPSK";

tmWaveGen.CodeRate = "1/2";

disp(tmWaveGen)

ccsdsTMWaveformGenerator with properties:

WaveformSource: "synchronization and channel coding"
HasRandomizer: true
HasASM: true
PCMFormat: "NRZ-L"

Channel coding

ChannelCoding: "LDPC"
NumBitsInInformationBlock: 1024
CodeRate: "1/2"

IsLDPCONSMTF: false

Digital modulation and filter

2-41

2 Functions

Modulation: "QPSK"
PulseShapingFilter: "root raised cosine"
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 10

Use get to show all properties
Specify the number of transfer frames.
numTF = 20;
Get the characteristic information about the CCSDS TM waveform generator.
info(tmWaveGen)
ans = struct with fields:
ActualCodeRate: 0.5000

NumBitsPerSymbol: 2
SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.
flushFilter(tmWaveGen)

ans = 100x1 complex

-0.0772 - 0.08671
-0.0751 - 0.08591
-0.0673 - 0.07881
-0.0549 - 0.06541
-0.0388 - 0.04691
-0.0200 - 0.02501
0.0002 - 0.0012i
0.0208 + 0.0227i
0.0405 + 0.04531i
0 + 0.06531

.0587

Get ETSI Rician Channel Information
Get information from a etsiRicianChannel System object by using the info object function.

Create a European Telecommunication Standards Institute (ETSI) Rician channel System object, and
then specify its properties.

chan = etsiRicianChannel;

chan.SampleRate = 2e5;
chan.KFactor = 10;

2-42

info

chan.MaximumDopplerShift = 20;
chan.NumSinusoids = 58;
disp(chan)

etsiRicianChannel with properties:

SampleRate: 200000
KFactor: 10
MaximumDopplerShift: 20

Use get to show all properties

Pass data through the channel.

txWaveform
rxWaveform

randi([0 1],500,1);
chan(txWaveform);

Get the characteristic information about the ETSI Rician channel.
info(chan)

ans = struct with fields:
ChannelFilterDelay: 0
ChannelFilterCoefficients: 1
NumSamplesProcessed: 500

Get P-Code State Information

Get information from a gpsPCode System object™ by using the info object function. Observe how
the precision of initial time impacts the generation of the P-code.

Create a P-code generator System object™, and then specify its properties.

format long
pgen = gpsPCode

pgen =
gpsPCode with properties:

PRNID: 1
OutputCodeLength: 10230
InitialStateFormat: "seconds"
InitialTime: O

pgen.InitialStateFormat = "chips";
pgen.InitialNumChipsElapsed = 8388600;

Get the characteristic information about the P-code generator.
pgen.info

ans = struct with fields:
TotalNumChipsElapsed: 8388600
TotalSecondsElapsed: 0.820000000000000

2-43

2 Functions

Advance the time by a quarter of a P-code chip time (that is, 0.25/10.23e6).

pgenl = gpsPCode;
pgenl.InitialTime = pgen.info.TotalSecondsElapsed + 0.25/10.23e6

pgenl =
gpsPCode with properties:

PRNID: 1
OutputCodelLength: 10230
InitialStateFormat: "seconds"
InitialTime: 0.820000024437928

pgenl.info

ans = struct with fields:
TotalNumChipsElapsed: 8388600
TotalSecondsElapsed: 0.820000000000000

The info function output shows no increment in the TotalNumChipsElapsed in this case, because
TotalNumChipsElapsed is calculated internally using the function round.

Advance the time by half of a P-code chip time now (that is, 0.5/10.23€6).

pgen2 = gpsPCode;
pgen2.InitialTime = pgen.info.TotalSecondsElapsed + 0.5/10.23e6

pgen2 =
gpsPCode with properties:

PRNID: 1
OutputCodeLength: 10230
InitialStateFormat: "seconds"
InitialTime: 0.820000048875855

pgen2.info

ans = struct with fields:
TotalNumChipsElapsed: 8388601
TotalSecondsElapsed: 0.820000097751711

The info function output now shows the TotalNumChipsElapsed is incremented by one, due to the
internal usage of round () function.

Compare the output of each System object call.

code = pgen();

codel = pgenl()
code2 = pgen2()
isequal(code, codel) % code and codel are equal

’
’

ans = logical
1

isequal(codel,code2) % codel and code2 are unequal

2-44

info

ans = logical
0

Input Arguments

obj — Input object
dvbs2WaveformGenerator | dvbs2xWaveformGenerator | dvbrcs2WaveformGenerator |
ccsdsTMWaveformGenerator | etsiRicianChannel | gpsPCode

Input object to get information from, specified as a dvbs2WaveformGenerator,
dvbs2xWaveformGenerator, dvbrcs2WaveformGenerator, ccsdsTMWaveformGenerator,
etsiRicianChannel, or gpsPCode System object.

Output Arguments

s — Characteristic information of specified object
structure

Characteristic information of the specified object, returned as a structure. The fields of the structure
depend on the obj input.

+ Ifobjisadvbs2WaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Digital Video Broadcasting Satellite Second
Generation (DVB-S2) waveform generator.

Field Value Description
ModulationScheme String scalar (default) or cell |Modulation scheme, returned
array of character vectors as a string scalar for single-

input stream and a cell array
of character vectors of length
equal to the
NumInputStreams property
of the
dvbs2WaveformGenerator
object for multi-input streams.

LDPCCodelIdentifier String scalar (default) or cell |LDPC code identifier used in
array of character vectors forward error correction
(FEC), returned as a string
scalar for single-input stream
and a cell array of character
vectors of length equal to
NumInputStreams property
of the
dvbs2WaveformGenerator
object for multi-input streams.

+ Ifobjisadvbs2xWaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Digital Video Broadcasting Satellite Second
Generation extended (DVB-S2X) waveform generator.

2-45

2 Functions

2-46

Field

Value

Description

FECFrame

String scalar (default) or cell
array of character vectors

FEC frame format, returned
as a string scalar for single-
input stream and a cell array
of character vectors of length
equal to NumInputStreams
property of
dvbs2xWaveformGenerator
object for multi-input streams.

ModulationScheme

String scalar (default) or cell
array of character vectors

Modulation scheme, returned
as a string scalar for single-
input stream and a cell array
of character vectors of length
equal to NumInputStreams
property of
dvbs2xWaveformGenerator
object for multi-input streams.

LDPCCodeIdentifier

String scalar (default) or cell
array of character vectors

LDPC code identifier used in
forward error correction
(FEC), returned as a string
scalar for single-input stream
and a cell array of character
vectors of length equal to
NumInputStreams property
of
dvbs2xWaveformGenerator
object for multi-input streams.

If obj is a dvbrcs2WaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Digital Video Broadcasting Second Generation
Return Channel over Satellite (DVB-RCS2) waveform generator.

Field

Value

Description

BurstLength

positive integer

Length of the burst, in
symbols, prior to the pulse
shaping, returned as a
positive integer.

PayloadLengthInBytes

integer in the range [3,
65,535]

Input data length, in bytes, to
the forward error correction
(FEC) encoder, returned as a
integer in the range [3,
65,535].

MappingScheme

"pi/2-BPSK", "QPSK",
"8PSK", or "16QAM"

Symbol mapping and
modulation scheme to
generate the DVB-RCS2
waveform, returned as
"pi/2-BPSK", "QPSK",
"8PSK", or "16QAM".

info

Field

Value

Description

CodeRate

lll/3ll' Il1/2l|, II2/3II,
II3/4II' Il4/5l|, II5/6II,
II6/7II' or II7/8II

Code rate of the channel
encoder, returned as "1/3",
Il1/2l|, II2/3II, "3/4",
Il4/5l|, II5/6II, "6/7", OI‘
Il7/8ll.

PreamblelLength

integer in the range [0, 255]

Number of preamble symbols
that are prefixed to the burst
symbols prior to the
modulation, returned as a
integer in the range [0, 255].

When you set the
TransmissionFormat
property to "TC-LM", the unit
of preamble length is symbols.
When you set the
TransmissionFormat
property to "SS-TC-LM", the
unit of preamble length is
chips.

PostambleLength

integer in the range [0, 255]

Number of postamble symbols
that are suffixed to the burst
symbols, prior to the
modulation, returned as a
integer in the range [0, 255].

When you set the
TransmissionFormat
property to "TC-LM", the unit
of preamble length is symbols.
When you set the
TransmissionFormat
property to "SS-TC-LM", the
unit of preamble length is
chips.

PilotPeriod

integer in the range [0, 4095]

Pilot symbol periodicity,
including the burst symbols,
returned as a integer in the
range [0, 4095].

This period represents the
length of the sequence from
the first symbol of a pilot
block to the first symbol of the
next pilot block in symbols or
chips.

PilotBlockLength

integer in the range [1, 255]

Length of the pilot block, in
symbols, returned as a integer
in the range [1, 255].

2-47

2 Functions

Field Value Description

PermutationParameters five-element vector DVB-RCS2 turbo encoder
permutation control
parameters that are used to
generate turbo encoder
interleaver indices, returned
as a five-element vector in
order: P, Qy, Q;, Q,, and Qs.

UniqueWord character array or string Hexadecimal string consisting
scalar of combined symbols of the
preamble, one pilot block, and
the postamble sequence,
returned as a character array
or string scalar.

+ Ifobjisa ccsdsTMWaveformGenerator System object, the output structure has these fields,
consisting of physical layer information about the Consultative Committee for Space Data Systems
(CCSDS) Telemetry (TM) waveform generator.

Field Value Description

ActualCodeRate positive scalar in range [0 1] |Numeric value of the code
rate of the channel coding
scheme, returned as a positive
scalar in the range [0, 1]. This
value is used to generate the
CCSDS TM waveform.

NumBitsPerSymbol positive integer Number of bits per modulated
symbol, returned as a positive
integer.

SubcarrierFrequency positive scalar Subcarrier frequency,

returned as a positive scalar.
This field is applicable only
when the Modulation
property of
ccsdsTMWaveformGenerato
r object is set to "PCM/PSK/
PM". For other cases, this
value is returned as null.

+ IfobjisanetsiRicianChannel System object, the output structure has these fields, consisting
of information about the fading channel.

Field Value Description

ChannelFilterDelay 0 Channel filter delay in
samples returned as 0 always
(due to flat-fading nature of
the channel).

2-48

info

Field Value Description
ChannelFilterCoefficien |1 Channel filter coefficient used
ts to convert path gains to

channel filter tap gains,
returned as 1 always (as
etsiRicianChannel
describes a single path
channel).

NumSamplesProcessed positive integer Number of samples processed
by the channel object since
the last reset, returned as a
positive integer.

» Ifobj is a gpsPCode System object, the output structure has these fields, consisting of state
information about the GPS P-code generator.

Field Value Description
TotalNumChipsElapsed positive integer Total number of P-code chips
that elapsed from the

beginning of the week,
returned as a positive integer.
The beginning of a week is
marked at midnight Saturday
night - Sunday morning.

TotalSecondsElapsed real-valued scalar Total seconds elapsed from
the beginning of the week,
returned as a real-valued
scalar.

See Also

Functions
flushFilter

Objects
dvbs2WaveformGenerator | dvbs2xWaveformGenerator | dvbrcs2WaveformGenerator |
ccsdsTMWaveformGenerator | etsiRicianChannel | gpsPCode

Introduced in R2021a

2-49

2 Functions

flushFilter

Flush transmit filter

Syntax

out = flushFilter(obj)

Description

out = flushFilter(obj) passes zeros through the transmit filter in the input waveform
generator to flush the residual data samples that remain in the filter state. The function returns the
residual data samples.

You must call the input waveform generator System object (not only create the object) prior to using
the flushFilter object function. The number of zeros passed through the transmit filter depends
on the filter delay. This object function is required for the receiver simulations to recover all of the
bits in the last physical layer frame.

Examples

Get DVB-S2 Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2WaveformGenerator System object by using the info function. Then
retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file")
if ~exist('s2xLDPCParityMatrices.zip', 'file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 1;

Create a Digital Video Broadcasting standard (DVB-S2) System object, and then specify its properties.

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [21 16];
s2WaveGen.DFL 47008;
s2WaveGen.ISSYI true;
s2WaveGen.SamplesPerSymbol = 2;
disp(s2WaveGen)

2-50

flushFilter

dvbs2WaveformGenerator with properties:

StreamFormat: "TS"
NumInputStreams: 2
FECFrame: "normal"
MODCOD: [21 16]
DFL: 47008
ScalingMethod: "outer radius as 1"
HasPilots: O
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 2
ISSYI: true
ISCRFormat: "short"

Show all properties

Get the characteristic information about the DVB-S2 waveform generator.
info(s2WaveGen)

ans = struct with fields:
ModulationScheme: {'16APSK' '8PSK'}
LDPCCodeIdentifier: {'5/6' '8/9'}

Create the bit vector of input information bits, data, of concatenated TS user packets.

syncBits = [0 1000 111]"'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1l,s2WaveGen.NumInputStreams);
for i = 1:s2WaveGen.NumInputStreams

numPkts = s2WaveGen.MinNumPackets(i)*numFrames;

txRawPkts = randi([0 1], pktLen,numPkts);

ISSY = randi([0 1],16,numPkts); % ISCRFormat is 'short' by default

% 'short' implies the default length of ISSY as 2 bytes

txPkts = [repmat(syncBits,1,numPkts);txRawPkts;ISSY]; % ISSY is appended at the end of UP

data{i} = txPkts(:);
end

Generate a DVB-S2 time-domain waveform using the information bits.
txWaveform = [s2WaveGen(data)];
Check the filter residual data samples that remain in the filter delay.

flushFilter(s2WaveGen)

ans = 20x1 complex

0.0153 + 0.4565i
0.2483 + 0.5535i
0.3527 + 0.3972i
0.3541 - 0.0855i
0.3505 - 0.4071i
0.4182 - 0.1962i
0.5068 + 0.06361
0.4856 - 0.1532i
0.3523 - 0.4153i

2-51

2 Functions

0.1597 - 0.22631

Recover Data Bits from Transport Stream DVB-S2 Transmission

Recover user packets (UPs) for multiple physical layer (PL) frames in a single transport stream
Digital Video Broadcasting Satellite Second Generation (DVB-S2) transmission.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file')
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream. Create a DVB-S2 System object.

nFrames = 2;
s2WaveGen = dvbs2WaveformGenerator;

Create the bit vector of information bits, data, of concatenated TS UPs.

syncBits = [0 1 0006 111]"; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2WaveGen.MinNumPackets*nFrames;

txRawPkts = randi([0 1],pktLen,numPkts);

txPkts = [repmat(syncBits,1,numPkts); txRawPkts];

data = txPkts(:);

Generate the DVB-S2 time-domain waveform using the input information bits. Flush the transmit
filter to handle the filter delay and recover the complete last frame.

txWaveform = [s2WaveGen(data); flushFilter(s2WaveGen)];

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = s2WaveGen.SamplesPerSymbol;

EsNodB = 1;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, 'measured');

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',s2WaveGen.RolloffFactor,
"InputSamplesPerSymbol',sps, ...
'DecimationFactor',sps);

s = coeffs(rxFilter);

rxFilter.Gain = sum(s.Numerator);

2-52

flushFilter

Apply matched filtering and remove the filter delay.

filtOut
rxFrame

rxFilter(rxIn);
filtOut(rxFilter.FilterSpanInSymbols+1l:end);

Recover UPs. Display the number of frames lost and the UP cyclic redundancy check (CRC) status.

[bits,FramesLost,pktCRCStat] = dvbs2BitRecover(rxFrame,10”(-EsNodB/10));
disp(FramesLost)

0
disp(pktCRCStat)
{20x1 logical}

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file")
if ~exist('s2xLDPCParityMatrices.zip', 'file"')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();

s2xWaveGen.HasTimeSlicing = true;

s2xWaveGen.NumInputStreams = 2;

s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];

s2xWaveGen.PLScramblingIndex = [0 1];

disp(s2xWaveGen)

dvbs2xWaveformGenerator with properties:

StreamFormat: "TS"
HasTimeSlicing: true
NumInputStreams: 2
PLSDecimalCode: [135 145]
DFL: [18048 44656]

2-53

2 Functions

2-54

PLScramblingIndex: [0 1]
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 4
ISSYI: false

Show all properties
Get the characteristic information about the DVB-S2X waveform generator.
info(s2xWaveGen)
ans = struct with fields:
FECFrame: {'normal' ‘'normal'}

ModulationScheme: {'QPSK' '8PSK'}
LDPCCodeIdentifier: {'9/20' '25/36'}

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 0 00611 1]"'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1l, s2xWaveGen.NumInputStreams);

for i = 1l:s2xWaveGen.NumInputStreams
numPkts = s2xWaveGen.MinNumPackets(i)*numFrames;
txRawPkts = randi([0 1], pktLen, numPkts);
txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
data{i} = txPkts(:);

end

Generate a DVB-S2X time-domain waveform using the information bits.
txWaveform = s2xWaveGen(data);
Check the filter residual data samples that remain in the filter delay.

flushFilter(s2xWaveGen)

ans = 40x1 complex

-0.2412 - 0.01431
-0.2619 - 0.08611
-0.2726 - 0.13371
-0.2511 - 0.15971
-0.1851 - 0.16801
-0.0780 - 0.16021
0.0448 - 0.1288i
0.1598 - 0.0751i
0.2482 - 0.0049i
0 0.07021

.3026 +

flushFilter

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;

tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;

tmWaveGen.Modulation = "QPSK";

tmWaveGen.CodeRate = "1/2";

disp(tmWaveGen)

ccsdsTMwWaveformGenerator with properties:

WaveformSource: "synchronization and channel coding"
HasRandomizer: true
HasASM: true
PCMFormat: "NRZ-L"

Channel coding
ChannelCoding: "LDPC"
NumBitsInInformationBlock: 1024
CodeRate: "1/2"
IsLDPCONSMTF: false

Digital modulation and filter
Modulation: "QPSK"
PulseShapingFilter: "root raised cosine"
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 10

Use get to show all properties
Specify the number of transfer frames.
numTF = 20;
Get the characteristic information about the CCSDS TM waveform generator.

info(tmWaveGen)

ans = struct with fields:
ActualCodeRate: 0.5000
NumBitsPerSymbol: 2
SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.

2-55

2 Functions

2-56

flushFilter (tmWaveGen)

ans = 100x1 complex

-0.0772 - 0.08671
-0.0751 - 0.08591
-0.0673 - 0.07881
-0.0549 - 0.06541
-0.0388 - 0.04691
-0.0200 - 0.02501
0.0002 - 0.00121
0.0208 + 0.02271
0.0405 + 0.04531
0

.0587 + 0.06531

Input Arguments

obj — Waveform generator
dvbs2WaveformGenerator | dvbs2xWaveformGenerator | ccsdsTMWaveformGenerator

Waveform generator object, specified as a dvbs2WaveformGenerator,
dvbs2xWaveformGenerator, or ccsdsTMWaveformGenerator System object.

To enable the flushFilter object function when you specify obj as a
ccsdsTMWaveformGenerator System object, you must set these dependencies in the
ccsdsTMWaveformGenerator object.

* Set the WaveformSource property to "synchronization and channel coding".
* Set the ChannelCoding property to one of these values.

° Ilnonell
° IIRSII
* "turbo"

* "LDPC" — In this case, you must also set the IsLDPCOnSMTF property to 0 (false)

* "convolutional" — In this case, you must also set the ConvolutionalCodeRate property
to either "1/2" or "2/3"

+ "concatenated" — In this case, you must also set the ConvolutionalCodeRate property to
either "1/2" or "2/3"

* Set the Modulation property to either "BPSK" or "QPSK".

Output Arguments

out — Residual data samples that remain in filter state
column vector

Residual data samples that remain in the filter state, returned as a column vector. The length of the
column vector is equal to the product of the SamplesPerSymbol and FilterSpanInSymbols
properties of the input object, obj.

flushFilter

When you specify obj as dvbs2WaveformGenerator or dvbs2xWaveformGenerator System
object and the NumInputStream property as a value greater than 1, the data fields generated from
different input streams are merged in a round-robin technique into a single stream. The residual
samples of the frame after the merging process are flushed out.

Data Types: double
See Also

Functions
info

Objects
ccsdsTMWaveformGenerator | dvbs2WaveformGenerator | dvbs2xWaveformGenerator

Introduced in R2021a

2-57

2 Functions

2-58

satellite

Add satellites to satellite scenario

Syntax

satellite(scenario,tlefile)
satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,
argofperiapsis,trueanomaly)

satellite(scenario,positiontable)
satellite(scenario,positiontable,velocitytable)
satellite(scenario,positiontimeseries)
satellite(scenario,positiontimeseries,velocitytimeseries)
satellite(,Name,Value)

sat = satellite()

Description

sat = satellite(scenario, tlefile) adds a Satellite object from TLE file to the satellite
scenario specified by scenario, specified as a string scalar or character vector. The yaw (z) axes of
the satellites point toward nadir, and the roll (x) axes of the satellites align with their respective
inertial velocity vectors.

satellite(scenario,semimajoraxis,eccentricity,inclination, RAAN,
argofperiapsis, trueanomaly) adds a Satellite object from Keplerian elements defined in the
Geocentric Celestial Reference Frame (GCRF) to the satellite scenario.

satellite(scenario,positiontable) adds a Satellite object from position data specified in
positiontable (timetable object) to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontable,velocitytable) adds a Satellite object from position
data specified in positiontable (timetable object) and velocity data specified in
velocitytable (timetab'le object) to the scenario. This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontimeseries) adds a Satellite object from position data
specified in positiontimeseries (timeseries object). This function creates a Satellite with
OrbitPropagator="ephemeris".

satellite(scenario,positiontimeseries,velocitytimeseries) adds a Satellite object
to the scenario from position (in meters) data specified in positiontimeseries (timeseries
object) and velocity (in meters/second) data specified in velocitytimeseries (timeseries
object). This function creates a Satellite with OrbitPropagator="ephemeris".

satellite(,Name, Value) specifies options using one or more name-value arguments in
addition to any input argument combination from previous syntaxes. For example,
('Name', 'satellitel') specifies the name of the satellite as 'satellitel’..

sat = satellite() returns a vector of handles to the added satellites. Specify any input
argument combination from previous syntaxes.

satellite

Examples

Add Four Satellites from Position Timetable and Visualize Their Trajectories

Add four satellites to the satellite scenario from a position timetable to a satellite scenario and
visualize their trajectories.

Create a default satellite scenario object.

sc = satelliteScenario;

Load a satellite ephemeris timetable, assuming the data is in the GCRF coordinate frame.
load("timetableSatelliteTrajectory.mat", "positionTT");

Add the satellites to the scenario.

sat = satellite(sc,positionTT);

Visualize the trajectories of the satellites.

play(sc);

Add Four Satellites from Position and Velocity Timetable and Visualize Their Trajectories

Add four satellites to the satellite scenario from position and velocity timetables in the Earth
Centered Earth Fixed (ECEF) frame and visualize their trajectories.

Create a default satellite scenario object.

sc = satelliteScenario;

Load a satellite ephemeris timetable, assuming the data is in the ECEF coordinate frame.
load("timetableSatelliteTrajectory.mat","positionTT", "velocityTT");

Add the satellites to the scenario.

sat = satellite(sc,positionTT,velocityTT,"CoordinateFrame", "ecef")

Visualize the trajectories of the satellites.

play(sc);

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime, stopTime, sampleTime);
lat = [10];

2-59

2 Functions

2-60

lon = [-30];

gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis
eccentricity =
inclination =

10000000;

0;

10;
rightAscension0OfAscendingNode

argumentOfPeriapsis = 0;

trueAnomaly = 0
sat = satellite(sc, semiMajorAxis, eccentricity, inclination,
rightAscension0OfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);

’

intvls = accessIntervals(ac)

intvls=8x8 table

=0;

Source Target IntervalNumber StartTime EndTir
"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020
"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

satellite

Community

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];
inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];

2-61

2 Functions

argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination,
rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat =
1x2 Satellite array with properties:

Name

ID
ConicalSensors
Gimbals
Transmitters
Receivers
Accesses
GroundTrack
Orbit
OrbitPropagator
MarkerColor
MarkerSize
ShowLabel
LabelFontSize
LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat, 'LeadTime"',3600)

ans=1x2 object
1x2 GroundTrack array with properties:

LeadTime
TrailTime
LineWidth
TraillLineColor
LeadLineColor
VisibilityMode

play(sc)

2-62

satellite

ounce: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CHNES/Airbus DS, USDA, USGES, AsnGRID, IGN, and the GIS User Community

Input Arguments

scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

tlefile — Name of TLE file
character vector | string scalar

Name of a TLE file, specified as a character vector or a string scalar. The TLE file must exist in the
current directory, exist in a directory on the MATLAB path, or include a full or relative path to a file.

For more information on TLE files, see “Two Line Element (TLE) Files”.

Data Types: char | string

2-63

2 Functions

2-64

semimajoraxis, eccentricity, inclination, RAAN, argofperiapsis, trueanomaly —
Keplerian elements defined in GCRF
comma-separated list of vectors

Keplerian elements defined in the GCRE, specified as a comma-separated list of vectors. The
Keplerian elements are:

* semimajoraxis - This vector defines the semimajor axis of the orbit of the satellite. Each value is
equal to half of the longest diameter of the orbit.

* eccentricity - This vector defines the shape of the orbit of the satellite.

* inclination - This vector defines the angle between the orbital plane and the xy-plane of the
GCREF for each satellite.

* RAAN (right ascension of ascending node) - This element defines the angle between the xy-plane of
the GCRF and the direction of the ascending node, as seen from the Earth's center of mass for
each satellite. The ascending node is the location where the orbit crosses the xy-plane of the
GCRF and goes above the plane.

* argofperiapsis (argument of periapsis) - This vector defines the angle between the direction of
the ascending node and the periapsis, as seen from the Earth's center of mass. Periapsis is the
location on the orbit that is closest to the Earth's center of mass for each satellite.

* trueanomaly - This vector defines the angle between the direction of the periapsis and the
current location of the satellite, as seen from the Earth's center of mass for each satellite.

For more information on Keplerian elements, see “Orbital Elements”.

positiontable — Position data
timetable | table

Position data in meters, specified as a timetable created using the timetable function.
positiontable has exactly one monotonically increasing column of rowTimes (datetime or
duration values) and one or more columns of variables, where each column contains an individual
satellite position over time.

If rowTimes values are of type duration, time values are measured relative to the current scenario
StartTime property. The timetable VariableNames are used by default if no names are provided as
an input. Satellite states are assumed to be in the GCRF unless a CoordinateFrame name-value
argument is provided. States are held constant in GCRF for scenario timesteps outside of the time
range of positiontable.

Data Types: table | timetable

velocitytable — Velocity data
timetable | table

Velocity data in meters/second, specified as a timetable created using the timetable function.
velocitytable has exactly one monotonically increasing column of rowTimes (datetime or
duration values) and one or more columns of variables, where each column contains an individual
satellite position over time.

If rowTimes values are of type duration, time values are measured relative to the current scenario
StartTime property. The timetable VariableNames are used by default if no names are provided as
an input. Satellite states are assumed to be in the GCRF unless a CoordinateFrame name-value
argument is provided. States are held constant in GCRF for scenario timesteps outside of the time
range of velocitytable.

satellite

Data Types: table | timetable

positiontimeseries — Position data
timeseries object | tscollection object

Position data in meters, specified as a timeseries object or a tscollection object.

» Ifthe Data property of the timeseries or tscollection object has two dimensions, one
dimension must equal 3, and the other dimension must align with the orientation of the time
vector.

+ Ifthe Data property of the timeseries or tscollection has three dimensions, one dimension
must equal 3, either the first or the last dimension must align with the orientation of the time
vector, and the remaining dimension defines the number of satellites in the ephemeris.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property. The timeseries Name property (if defined) is used by default
if no names are provided as inputs. Satellite states are assumed to be in the GCRF unless a
CoordinateFrame name-value pair is provided. States are held constant in GCRF for scenario
timesteps outside of the time range of positiontimeseries.

Data Types: timeseries | tscollection

velocitytimeseries — Velocity data
timeseries object | tscollection ohject

Velocity data in meters/second, specified as a timeseries object or a tscollection object.

» Ifthe Data property of the timeseries or tscollection object has two dimensions, one
dimension must equal 3, and the other dimension must align with the orientation of the time
vector.

» Ifthe Data property of the timeseries or tscollection has three dimensions, one dimension
must equal 3, either the first or the last dimension must align with the orientation of the time
vector, and the remaining dimension defines the number of satellites in the ephemeris.

When timeseries.TimeInfo.StartDate is empty, time values are measured relative to the
current scenario StartTime property. The timeseries Name property (if defined) is used by default
if no names are provided as inputs. Satellite states are assumed to be in the GCRF unless a
CoordinateFrame name-value pair is provided. States are held constant in GCRF for scenario
timesteps outside of the time range of velocitytimeseries.

Data Types: timeseries | tscollection
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Name', 'MySatellite' sets the satellite name to 'MySatellite'.
Viewer — Satellite scenario viewer

row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

2-65

2 Functions

2-66

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

Name — satellite name
"satellite idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling satellite. After you call satellite, this property is read-only.

satellite name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.
+ If only one satellite is added, specify Name as a string scalar or a character vector.

+ If multiple satellites are added, specify Name as a string vector or a cell array of character vectors.
The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

In the default value, idx is the count of the satellite added by the satellite object function. If
another satellite of the same name exists, a suffix idx, is added, where idx; is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

OrbitPropagator — Name of orbit propagator
"sgp4" (default) | "two-body-keplerian" | "sdp4" | "ephemeris"”

You can set this property when calling satellite only. After you call satellite, this property is
read-only.

Name of the orbit propagator used for propagating satellite position and velocity, specified as the
comma-separated pair consisting of 'OrbitPropagator' and either "two-body-keplerian",
"sgp4", "sdp4", or "ephemeris".

Dependencies

OrbitPropagator is not available for ephemeris data inputs (timetable or timeseries). In these
cases, satellite ignores this name-value pair.

Data Types: string | char

CoordinateFrame — Satellite state coordinate frame
"inertial" (default) | "ecef" | "geographic"

Satellite state coordinate frame, specified as the comma-separated pair consisting of
"CoordinateFrame' and one of these values:

* "inertial" — For timeseries or timetable data, specifying this value accepts the position
and velocity in the GCRF frame.

+ "ecef" — For timeseries or timetable data, specifying this value accepts the position and
velocity in the ECEF frame.

* "geographic" — For timeseries or timetable data, specifying this value accepts the position
[lat, lon, altitude], where lat and lon are latitude and longitude in degrees, and altitude is the
height above the World Geodetic System 84 (WGS 84) ellipsoid in meters.

Velocity is in the local NED frame.

satellite

Dependencies

To enable this name value argument, ephemeris data inputs (timetable or timeseries).

Data Types: string | char

Output Arguments

sat — Satellite in the scenario
Satellite object

Satellite in the scenario, returned as a Satellite object belonging to the satellite scenario specified
by scenario.

You can modify the Satellite object by changing its property values.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
access | receiver | transmitter | show | play | hide | orbitalElements

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”

“Comparison of Orbit Propagators”

“Modeling Satellite Constellations Using Ephemeris Data”

“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

2-67

2 Functions

2-68

conicalSensor

Package: matlabshared.satellitescenario

Add conical sensor to satellite scenario

Syntax

conicalSensor(parent)
conicalSensor(parent,Name,Value)
S = conicalSensor()

Description

conicalSensor(parent) adds a default ConicalSensor object to parent which can be a
satellite, groundStation or gimbal.

conicalSensor(parent,Name,Value) specifies options using one or more name-value arguments.
For example, 'MaxViewAngle', 90 specifies a field of view angle of 90 degrees.

S = conicalSensor() returns a handle to the added conical sensor. Specify any input
argument combination from previous syntaxes.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)
sC =
satelliteScenario with properties:
StartTime: 21-Jun-2021 08:55:00
StopTime: 26-Jun-2021 08:55:00
SampleTime: 60
Viewers: [0x0 matlabshared.satellitescenario.Viewer]
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;

eccentricity =

0;
inclination = 50;

conicalSensor

rightAscension0fAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 50;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly)

sat =
Satellite with properties:

Name: Satellite 1
ID: 1
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sgp4
MarkerColor: [1 0 0]
MarkerSize: 10
ShowLabel: true
LabelFontColor: [1 0 0]
LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph",
"Latitude",42.3001, "Longitude",-71.3504) % degrees

gs =
GroundStation with properties:

Name: Location To Photograph
ID: 2
Latitude: 42.3 degrees
Longitude: -71.35 degrees
Altitude: 0 meters
MinElevationAngle: 0 degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
MarkerColor: [0 1 1]
MarkerSize: 10
ShowLabel: true
LabelFontColor: [0 1 1]
LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.
g = gimbal(sat)

Gimbal with properties:

2-69

o° o o°
o o o

2 Functions

2-70

Name: Gimbal 3
ID: 3
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.
pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g, "MaxViewAngle",b60)

camSensor =
ConicalSensor with properties:

Name: Conical sensor 4
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
MaxViewAngle: 60 degrees
Accesses: [1x0 matlabshared.satellitescenario.Access]
FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac

access(camSensor,gs)

ac =
Access with properties:

Sequence: [4 2]
LineWidth: 1
LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

conicalSensor

4 Satellae Scenans Viewer = o

Souroe: D, Maxw, ool ye, Latheter Geographeos, TR0t 06, LITGOA, LSO, AsmolE0, W0, and) T CHLY Usew Communty

, dun 23 T 00008 UTC

Jun 4 M 50:08 08 UTC
|

Jeam 16 32 e 0 00
|

Determine the intervals during which the camera can see the geographical site.

t =

t=35x8 table

accessIntervals(ac)

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00
"Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00
"Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00
"Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00
"Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00

sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00

"Conical

Calculate the maximum revisit time in hours.

2-71

2 Functions

2-72

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(l:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667
Visualize the revisit times that photographs the location.

play(sc);

. Satellte Scenamd Viewer

o [wr, Moxow” ol we, T srtheter Ceeographos., M St 0F LSS, AerolS0, WM, and T CH5 e T
Jun 23 D 0000080 UTC Jorn 4 0808 UTC Juan 8 207 S 0000 1
|

Input Arguments

parent — Element of scenario to which conicalSensor is added
Satellite object | GroundStation object | Gimbal object

Element of scenario to which the conicalSensor is added, specified as a Satellite,
GroundStation, or Gimbal object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and

value pair arguments in any order as Namel,Valuel, ..., NameN,ValueN.

Example: 'MountingAngle', [20; 35; 10] sets the yaw, pitch, and roll angles of the conical

sensor to 20, 35, and 10 degrees, respectively.

conicalSensor

Name — conicalSensor name
"conicalSensor idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling conicalSensor. After you call conicalSensor, this property
is read-only.

conicalSensor name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

» If only one conicalSensor is added, specify Name as a string scalar or a character vector.

» If multiple conicalSensors are added, specify Name as a string vector or a cell array of character
vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the conicalSensor added by the conicalSensor object
function. If another conicalSensor of the same name exists, a suffix idx, is added, where idx, is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; O; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that

order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

Example: [0; 30; 60]

MaxViewAngle — Field of view angle
30 (default) | scalar in the range [0, 180]

Field of view angle, specified as a scalar in the range [0, 180]. Units are in degrees.

Output Arguments

S — Conical sensor
ConicalSensor object

Conical sensor attached to parent, returned as a ConicalSensor object.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

2-73

2 Functions

Functions
show | play | hide | groundStation | access | gimbal | satellite

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-74

satelliteScenarioViewer

satelliteScenarioViewer

Package: matlabshared.satellitescenario

Create viewer for satellite scenario

Syntax
satelliteScenarioViewer(scenario)

satelliteScenarioViewer(scenario,Name,Value)
v = satelliteScenarioViewer(scenario)

Description

satelliteScenarioViewer(scenario) creates a 3-D or 2-D satellite scenario viewer for the
specified satellite scenario.

Note

* Satellite Scenario Viewer is a 3-D map display and requires hardware graphics support for
WebGL™.

satelliteScenarioViewer(scenario,Name,Value) creates a new viewer using one or more
name-value arguments. For example, 'Basemap', 'topographic' bases the scenario on
Topographic imagery provided by Esri®.

v = satelliteScenarioViewer(scenario) returns the handle to the satellite scenario viewer.

Examples

Create and Visualize Satellite Scenario

Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite and ground station to the scenario. Additionally, add an access between the satellite
and the ground station.

sat = satellite(sc,"eccentricOrbitSatellite.tle");
gs = groundStation(sc);
access(sat,gs);

Visualize the scenario at the start time defined in the TLE file by using the Satellite Scenario Viewer.

satelliteScenarioViewer(sc);

2-75

2 Functions

2-76

| & Satellgs Senamd Vieansr = o

Shouroe: Ean, Maow, Dol we, st Geographecs., CRIC S0 OF5, LOA, LSO, AaeolS00), W, mnd! e T U Community
oy 5 2EchE 16.04 88 UTC Moy 5 2008 5 5880 UTC iy & EChY G600 8 LITC
| | |

Input Arguments

scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Basemap', 'topographic' bases the scenario on Topographic imagery provided by Esri.

Name — Name of viewer window
'Satellite Scenario Viewer' (default) | string scalar | character vector

Name of the viewer window, specified as a comma-separated pair consisting of 'Name' and either a
string scalar or a character vector.
Data Types: char | string

Position — Viewer window position
center of the screen (default) | row vector of four elements

satelliteScenarioViewer

Size and location of the satellite scenario window in pixels, specified as a row vector of four elements.
The elements of the vector are [left bottom width height]. In the default case, width and height are
800 and 600 pixels, respectively.

Basemap — Map on which scenario is visualized

'satellite’ (default) |

"topographic' | 'streets' | 'streets-light' | 'streets-dark' |

'"darkwater' | 'grayland' | 'bluegreen' | 'colorterrain' | 'grayterrain' | 'landcover'

Map on which scenario is visualized, specified as a comma-separated pair consisting of 'Basemap'
and one of the values specified in this table:

Earthstar Geograp!
CMES/Airbus DS

“ "streets’
n-Rg
Cape General-purpo
Town_ mélp :
i e d-
. TaMlE TR Courate,
2 Albwt bof roads a
R Fasy, [networks.
Oranjezicht e Waqqg':’ﬁosted by E
=

! 1 = SPark

Esri South Africa, HERE, Gar.
JNGA, UsGS

:T- _'-‘-H?-'l t 1“31"‘-\
JATa) exich
€ ""‘_"\.L-§,L

' topo%ﬁaphlc {
General-purpose.map
1.t|pp-1‘l§wlm 2 HEQRIEFEII d

opographic features.
MAE

Hosted by Esri.
1y,

51.;_|:1 LN o =
1"“.1:1.{
Esri South Africa, HERE, Gar
J LUSGES, NGA

2-77

2 Functions

"streets-light’

Map designed to
provide geographic
context while
highlighting user data
on a light background.

Hosted by Esri.

Esri South Africa, HERE, Gar
NGA, USGS

'blPeggeen'

‘Tw
m

PR

2N by

g land-ocea

[l g 7

areas and light
-

o

2N by

2-78

satelliteScenarioViewer

All basemaps except 'darkwater' require Internet access. The 'darkwater' basemap is included
with MATLAB and Satellite Communications Toolbox.

If you do not have consistent access to the Internet, you can download the basemaps created using
Natural Earth onto your local system by using the Add-On Explorer. The basemaps hosted by Esri are
not available for download.

Alignment of boundaries and region labels are a presentation of the feature provided by the data
vendors and do not imply endorsement by The MathWorks®.

Data Types: char | string

Dimension — Dimension of viewer
'3-D' (default) | '2-D'

Dimension of the viewer, specified as a comma-separated pair consisting of 'Dimension' and either
'3-D'or '2-D".

Data Types: char | string

PlaybackSpeedMultiplier — Speed of animation
50 (default) | positive scalar

Speed of the animation for the input scenario used by the play function, specified as a comma-
separated pair consisting of 'PlaybackSpeedMultiplier' and a positive scalar.

CameraReferenceFrame — Reference frame of camera
"ECEF' (default) | 'Inertial’

Reference frame of the camera, specified as a comma-separated pair consisting of
'CameraReferenceFrame' and one of these values:

¢ 'ECEF' — Earth-Centered Earth-Fixed camera.
o 'Inertial' — Inertially fixed camera.

When you specify 'Inertial', the globe rotates with respect to the camera. When you specify
"ECEF', the camera rotates with the globe.

2-79

2 Functions

2-80

Dependencies
To enable this name-value argument, set to Dimensionto '3-D'.

CurrentTime — Current simulation time
StartTime of satelliteScenario (default) | datetime array

Current simulation time of the viewer, specified as a datetime array. This value changes over time
when the animation is playing.

Data Types: datetime

Output Arguments

v — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, returned as a satelliteScenarioViewer object.

To specify, query, or visualize satellite scenario viewer details, use these functions:

campos Set or query camera position.

camheight Set or query camera height.

camheading Set or query camera heading angle.

camroll Set or query camera roll angle.

campitch Set or query camera pitch angle.

camtarget Target an object with the camera.

hideAll Hide all visualizations and animations in the
Satellite Viewer.

showAll Show all visualizations and animations in the
Satellite Viewer.

Tips

* To pan the viewer window without rotation, use Shift + left click + drag.

See Also

Functions
show | play | hide | access | groundStation | satellite

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”

“Comparison of Orbit Propagators”

“Modeling Satellite Constellations Using Ephemeris Data”

“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

satelliteScenarioViewer

Introduced in R2021a

2-81

2 Functions

2-82

play
Package: matlabshared.satellitescenario

Play satellite scenario simulation results on viewer

Syntax

play(scenario)
play(v)
play(scenario,Name,Value)

Description

play(scenario) plays simulation results of the satellite scenario, scenario, from its start time
(StartTime property) to its stop time (StopTime property) using a step size specified by the
SampleTime property. The function plays the results in a satellite scenario viewer.

play(v) plays the satellite scenario simulation on the Satellite Scenario Viewer specified by v.

play(scenario,Name,Value) specifies additional options using one or more name-value
arguments. For example, you can set the speed of animation to 40 times the real time speed, using
'PlaybackSpeedMultiplier’,40.

Examples

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];

inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination,
rightAscension0OfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat =
1x2 Satellite array with properties:

Name

play

ID
ConicalSensors
Gimbals
Transmitters
Receivers
Accesses
GroundTrack
Orbit
OrbitPropagator
MarkerColor
MarkerSize
ShowLabel
LabelFontSize
LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat, 'LeadTime',3600)

ans=1x2 object
1x2 GroundTrack array with properties:

LeadTime
TrailTime
LineWidth
TrailLineColor
LeadLineColor
VisibilityMode

play(sc)

2-83

2 Functions

ounce: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CHNES/Airbus DS, USDA, USGES, AsnGRID, IGN, and the GIS User Community

2-84

Input Arguments

scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

v — Viewer
scalar satelliteScenarioViewer object

Viewer, specified as a scalar satelliteScenarioViewer object.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'PlaybackSpeedMultiplier', 30 plays the animation 30 times faster than real time.

play

Viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

PlaybackSpeedMultiplier — Speed of animation
50 (default) | positive scalar

Speed of animation relative to real time, specified as a positive scalar.

See Also

Objects
satelliteScenario

Functions
hide | show | satellite | access | groundStation

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”

“Comparison of Orbit Propagators”

“Modeling Satellite Constellations Using Ephemeris Data”

“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

2-85

2 Functions

2-86

pointAt

Package: matlabshared.satellitescenario

Target at which entity must be pointed

Syntax

pointAt(sat,coordinates)
pointAt(sat, target)
pointAt(sat, 'nadir")

pointAt
pointAt
pointAt
pointAt

gim, 'none')
gim,coordinates)
gim, target)

gim, 'nadir")

—~ e~~~

Description

Satellite Object

pointAt(sat,coordinates) sets the attitude of the satellite sat such that its yaw (body z axis)
tracks the geographical coordinates [latitude; longitude; altitude] specified by coordinates. The
function constantly adjusts the attitude of the satellite so that its yaw (body z) axis points at the
desired target. Its roll (body x) axis is aligned with the inertial velocity vector by minimizing the angle
between them (exact alignment can be geometrically impossible).

pointAt(sat, target) sets the attitude of the satellite sat such that its yaw axis tracks the
specified target.The input target can be another satellite or ground station.

pointAt(sat, 'nadir') sets the attitude of the satellite sat such that its yaw axis points in the
nadir direction.

Gimbal Object

pointAt(gim, 'none') sets the steering angles (gimbal azimuth and gimbal elevation) of the
gimbal gim to zero.

pointAt(gim,coordinates) steers gim independent of the parent such that its body z- axis tracks
the geographical coordinates [latitude; longitude; altitude] specified by coordinates.

The desired orientation is achieved by rotating the gimbal about its body z-axis (gimbal azimuth) and
secondly rotating the gimbal about its body y-axis (gimbal elevation). The function continuously
steers the gimbal for the duration of the simulation so that the gimbal points at the desired target.

pointAt(gim,target) steers gim such that its body z-axis tracks the specifiedtarget. target
can be another satellite or ground station.

pointAt(gim, 'nadir') steers gim such that its body z-axis points in the nadir direction of the
parent, namely, the parent's latitude, longitude, and 0 m altitude.

pointAt

Input Arguments

sat — Satellite
Satellite object

Satellite, specified as a Satellite object.

gim — Gimbal
Gimbal object

Gimbal, specified as a Gimbal object.

coordinates — Geographical coordinates of the satellite target
three-element row vector

Geographical coordinates of the satellite or gimbals' target, specified as a three-element row vector.
The latitude and longitude are specified in degrees, and the altitude is specified as the height above
the surface of the Earth in meters.

target — Target
Satellite object | GroundStation ohject

Target at which input sat or gim is pointed, specified as a Satellite or GroundStation object.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | access | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-87

2 Functions

2-88

camroll

Package: matlabshared.satellitescenario

Set or get roll angle of camera for satellite scenario viewer

Syntax

camroll(viewer, roll)
outRoll = camroll(viewer,)

Description

camroll(viewer, roll) sets the roll angle of the camera for the satellite scenario viewer. Setting
the roll angle rotates the camera around its x-axis.

outRoll = camroll(viewer,) returns the roll angle of the camera. If the second input is
roll, then the function sets the output equal to the input roll.

Input Arguments

viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.!

roll — Roll angle of camera
scalar in the range [-360, 360]

Roll angle of the camera, specified as a scalar in the range [-360, 360] degrees.

Tips

* When the pitch angle is near -90 (the default value) or 90 degrees, the camera loses one
rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camrol1 function.

1. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks®.

camroll

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | campitch | campos | hideAll | camtarget | camheight | camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-89

2 Functions

2-90

campitch
Package: matlabshared.satellitescenario

Set or get pitch angle of camera for satellite scenario viewer

Syntax

campitch(viewer,pitch)
outPitch = campitch(viewer,)

Description

campitch(viewer, pitch) sets the pitch angle of the camera for the specified satellite scenario
viewer. Setting the pitch angle tilts the camera up or down as shown in this figure..

outPitch = campitch(viewer,) returns the pitch angle of the camera. If the second input is
pitch, then the function sets the output equal to the input pitch.

Input Arguments

viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.?

pitch — Pitch angle of camera
scalar the in the range [-90, 90]

Pitch angle of the camera, specified as a scalar the in the range [-90, 90] degrees. By default, the
pitch angle is -90 degrees, which means that camera points directly toward the surface of the globe.

Tips

* When the pitch angle is near -90 (the default value) or 90 degrees, the camera loses one
rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camrol1 function.

2. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

campitch

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-91

2 Functions

2-92

campos

Package: matlabshared.satellitescenario

Set or get position of camera for satellite scenario viewer

Syntax

campos (viewer,lat, lon)

campos (viewer,lat, lon,height)

campos (viewer)

[LatOut, lonOut,heightOut] = campos()
Description

campos (viewer,lat, lon) sets the latitude and longitude of the camera for the specified satellite
scenario viewer.

campos (viewer, lat, lon, height) sets the latitude, longitude, and ellipsoidal height of the
camera. If you want to set only the height of the camera, use the camheight function instead.

campos (viewer) displays the latitude, longitude, and ellipsoidal height of the camera as a three-
element vector.

[LatOut, lonOut,heightOut] = campos() sets the position and then returns the latitude,
longitude, and height of the camera. Specify any input argument combinations from previous
syntaxes.

Input Arguments

viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.?

lat — Geodetic latitude of camera
0 (default) | scalar in the range [-90, 90].

Geodetic latitude of the camera, specified as a scalar in the range [-90, 90] degrees.

lon — Geodetic longitude of camera
0 (default) | scalar in the range [-360, 360].

Geodetic longitude of the camera, specified as a scalar in the range [-360, 360].

height — Ellipsoidal height of camera
15000000 (default) | numeric scalar

3. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

campos

Ellipsoidal height of the camera, specified as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid.

If you specify the height so that the camera is level with or below the surface of the Earth, then the
campos function sets the height to a value one meter above the surface.

Output Arguments

latOut — Geodetic latitude of camera
numeric scalar

Geodetic latitude of the camera, returned as a numeric scalar in degrees.

lonOut — Geodetic longitude of camera
numeric scalar

Geodetic longitude of the camera, returned as a numeric scalar in degrees.

heightOut — Ellipsoidal height of camera
numeric scalar

Ellipsoidal height of the camera, returned as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see
“Geodetic Coordinates”.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | hideAll | camtarget | camheight | camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-93

2 Functions

2-94

camheading

Package: matlabshared.satellitescenario

Set or get heading angle of camera for satellite scenario satellite scenario viewer

Syntax

camheading(viewer,heading)
outHeading = camheading(viewer,)

Description

camheading(viewer, heading) sets the heading angle of the camera for the specified satellite
scenario viewer. Setting the heading angle shifts the camera left or right about its z - axis.

outHeading = camheading(viewer,) returns the heading angle of the camera. If the second
input is heading, then the function sets the output equal to the input pitch.

Input Arguments

viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.*

heading — Heading angle of camera
360 (default) | scalar in the range [-360, 360]

Heading angle of the camera, specified as a scalar value in the range [-360, 360] degrees.

Tips

* When the pitch angle is near -90 (the default value) or 90 degrees, the camera loses one
rotational degree of freedom. As a result, when you change the roll angle, the heading angle might
change instead. This phenomenon is called gimbal lock. To avoid the effects of gimbal lock, call
the camheading function instead of the camrol1l function.

4, Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

camheading

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheight |
camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-95

2 Functions

2-96

camheight

Package: matlabshared.satellitescenario

Set or get height of camera for satellite scenario viewer

Syntax

camheight(viewer, height)
heightOut = camheight(viewer,)
Description

camheight(viewer, height) sets the ellipsoidal height of the camera for the specified satellite
scenario viewer.

heightOut = camheight(viewer,) returns the ellipsoidal height of the camera. If the
second input is height, then the function sets the output equal to the input height.
Input Arguments

viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.’

height — Ellipsoidal height of camera
15000000 (default) | numeric scalar

Ellipsoidal height of the camera, specified as a numeric scalar in meters. Satellite scenario viewer
objects use the WGS84 reference ellipsoid. For more information about ellipsoidal height, see
“Geodetic Coordinates”.

If you specify the height so that the camera is level with or below the surface of the Earth, then the
camheight function sets the height to a value one meter above the surface.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camtarget | camheading

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

5. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

camheight

“Satellite Scenario Basics”

Introduced in R2021a

2-97

2 Functions

2-98

camtarget

Package: matlabshared.satellitescenario

Set camera target for satellite scenario viewer

Syntax

camtarget(viewer, target)

Description

camtarget(viewer,target) focuses the camera on the input satellite or ground station. The
camera follows the object and can be unlocked by calling camtarget on another satellite or ground
station or by double-clicking anywhere in the map.

Input Arguments

viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.

target — Target of camera
Satellite object | GroundStation ohject

Target of the camera, specified as a scalar Satellite or GroundStation object.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | camroll | campitch | campos | hideAll | camheight | camheading

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

6. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

hideAll

hideAll

Package: matlabshared.satellitescenario

Hide all graphics in satellite scenario viewer

Syntax

hideAll(viewer)

Description

hideAll(viewer) hides all graphics in the specified satellite scenario viewer.

Input Arguments

viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.’

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | campos | camroll | campitch | camheading | camheight | camtarget |
access | groundStation | conicalSensor | showAll

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

“Comparison of Orbit Propagators”

Introduced in R2021a

7. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2-99

2 Functions

showAll

Package: matlabshared.satellitescenario

Show all graphics in viewer

Syntax

showAll(viewer)

Description

showAll(viewer) shows all graphics in the specified satellite scenario viewer.

Input Arguments

viewer — Satellite scenario viewer
satelliteScenarioViewer object

Satellite scenario viewer, specified as a satelliteScenarioViewer object. viewer must be
specified as a scalar satelliteScenarioViewer object.?

See Also

Objects
satelliteScenario | access | groundStation | satelliteScenarioViewer |
conicalSensor

Functions
show | play | hide | campos | camroll | campitch | camheading | camheight | camtarget

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

“Comparison of Orbit Propagators”

Introduced in R2021a

8. Alignment of boundaries and region labels are a presentation of the feature provided by the data vendors and do not
imply endorsement by MathWorks.

2-100

accessPercentage

accessPercentage

Package: matlabshared.satellitescenario

Percentage of time when access exists between first and last node defining access analysis

Syntax

ap = accessPercentage(ac)

Description
ap = accessPercentage(ac) returns the percentages of time from start time to stop time of the

satellite scenario when access exists between the first and last node of each access object in the input
vector.

Input Arguments

ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of a Access objects.

Outputs Arguments

ap — Access percentage
row vector of nonnegative numbers

Access percentage, returned as a row vector of nonnegative numbers.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-101

2 Functions

linkPercentage

Package: satcom.satellitescenario

Percentage of time when link between first and last node in link analysis is closed

Syntax

1p = linkPercentage(1lnk)

Description

1p = linkPercentage(1lnk) returns the percentages of time from start time to stop time of the
satellite scenario when link between the first and last node is closed.

Input Arguments

Ink — Link analysis
Link object scalar

Link analysis object, specified as a Link object scalar.

Outputs Arguments

1p — Link percentage
vector of positive numbers

Link percentage, returned as a vector of positive numbers.

See Also

Objects
satelliteScenario | satelliteScenarioViewer | Link

Functions
show | play | ebno | linkStatus | linkIntervals | groundStation

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-102

linkStatus

linkStatus

Package: satcom.satellitescenario

Status of link closure between first and last node

Syntax

linkStatus (1lnk)
linkStatus(lnk,timeIn)
s,timeOut] = linkStatus()

s
s
[

Description

s = linkStatus(lnk) returns the link closure status history between the first and last node in the
input Link object.

s = linkStatus(lnk,timeln) returns the link closure status at the specified datetime in timeIn.
[s,timeOut] = linkStatus() returns the link closure status and the corresponding times in

Universal Time Coordinated (UTC).

Input Arguments

1nk — Link analysis
Link object scalar

Link analysis object, specified as a Link object scalar.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

Outputs Arguments

s — Link closure status
scalar or row vector of logical values

Link closure status, returned as a row vector of logical values. If timeIn is specified, s is a row
vector, otherwise, the output is a scalar. The status at a given instant is 1 (true) if the link between
first and last node is closed. The link between the first and last node is closed when the link between
each individual pair of intermediate adjacent nodes in the Sequence property of the link is closed.

» For a given pair, the link is considered to be closed when both nodes belong to the same satellite
or ground station.

* Otherwise, the link between the pair is closed if the directionality is from a transmitter to a
receiver and the energy per bit to noise power spectral density ratio (Eb/No) at the receiver is
greater than its RequiredEbNo.

2-103

2 Functions

+ Additionally, if a given node is attached to a ground station directly or via a gimbal, the elevation
angle of the adjacent node with respect to the ground station must be greater than or equal to its
MinElevationAngle.

timeOut — Time samples of output link status
scalar | vector

Time samples of output link status, returned as a scalar or a vector. If time history of link status is
returned, timeOut is a row vector.

See Also

Objects
satelliteScenario | groundStation | satelliteScenarioViewer | Link

Functions
show | play | ebno | LinkPercentage | linkIntervals

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-104

linkIntervals

linkintervals

Package: satcom.satellitescenario

Intervals during which link is closed

Syntax

int = linkIntervals(1lnk)

Description

int = linkIntervals(1lnk) returns a table of intervals during which the link between the first
node and last node in each link object input vector is closed.

Input Arguments

1nk — Link analysis
Link object scalar

Link analysis object, specified as a Link object scalar.

Outputs Arguments

int — Intervals during which link is closed
table

Intervals during which the link is closed, returned as a table.

Each row of the table denotes a specific interval, and the columns of the table are named Source,
Target, IntervalNumber, StartTime, EndTime, Duration (in seconds), StartOrbit, and
EndOrbit. Source and Target are the names of the first and last node, respectively, that define the
link analysis.

* If Source is directly or indirectly attached to a satellite, then StartOrbit and EndOrbit
correspond to the satellite associated with Source.

+ If Target is directly or indirectly attached to a satellite, then StartOrbit and EndOrbit
correspond to the satellite associated with the Target. Otherwise, StartOrbit and EndOrbit
are NaN because they are associated with ground stations.

See Also

Objects
satelliteScenario | groundStation | satelliteScenarioViewer | Link

Functions
show | play | LinkPercentage | LinkStatus | ebno

Topics
“Model, Visualize, and Analyze Satellite Scenario”

2-105

2 Functions

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-106

aer

aer

Package: matlabshared.satellitescenario

Calculate azimuth angle, elevation angle, and range in NED frame from another satellite or ground
station

Syntax

az = aer(objIn,target)

[az,el] = aer(objIn,target)

[az,el,range] = aer(objIn,target)

[az,el,range,timeOut] = aer(objIn,target)

[1 = aer(objIn,target,timeln)

Description

az = aer(objIn,target) returns the history of azimuth angles, between satellite or ground
station objIn and another satellite or ground station target belonging to a given
satelliteScenario object.

[az,el] = aer(objIn,target) returns the history of elevation angles, el, between satellite or
ground station objIn and another satellite or ground station target.

[az,el,range] = aer(objIn,target) returns the history of the range of target with respect
toobjIn.

[az,el,range,timeOut] = aer(objIn,target) returns the corresponding time in timeQut.

[] = aer(objIn,target,timeIn) returns the outputs at the specified datetime timeIn.
Specify any output argument combinations from previous syntaxes.

Input Arguments

objIn — First scenario component
Satellite object | GroundStation ohject

First scenario component, specified as a Satellite or GroundStation object.

target — Second scenario component
Satellite object | GroundStation object

Second scenario component, specified as a Satellite or GroundStation object.

timeIn — Time at which output is calculated
scalar

Time at which output is calculated, specified as a scalar. If no time zone is specified in timelIn, the
time zone is assumed to be UTC.

2-107

2 Functions

2-108

Output Arguments

az — Azimuth angles
scalar | vector

Azimuth angles of target in the local azimuth, elevation and range (AER) system, returned as a scalar
or vector. Azimuths are measured clockwise from North. Values are specified in degrees in the
interval [0, 360). The vector elements correspond to the time samples from the satellite scenario
StartTime to StopTime properties, as specified by the SampleTime property. The azimuth angle is
defined in the North-East-Down (NED) frame of (and centered at) objIn such that 0 degrees is
North, 90 degrees is East, 180 degrees is South, and 270 degrees is West.

el — Elevation angles
scalar | vector

Elevation angles of target in the local AER system, returned as a scalar or vector. Elevations are
measured with respect to a plane that is perpendicular to the normal of the surface of the earth. If
objIn is on the surface of the Earth, then the plane is tangent to the Earth.

Values are specified in degrees in the closed interval [0 180]. The vector elements correspond to the
time samples from the satellite scenario StartTime to StopTime properties, as specified by the
SampleTime property. The elevation angle is defined in the NED frame of (and centered at) objIn
such that 0 deg implies target is on the North East (NE) plane, 90 degrees implies target is
directly above objIn, and -90 degrees implies target is directly below objIn.

range — Distances from local origin
scalar | vector

Distances from the local origin in meters, returned as a scalar or vector.

timeOut — Time samples between start and stop time of scenario
scalar | vector

Time samples corresponding to az, el, and range, returned as a scalar or vector.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | access | groundStation | conicalSensor | transmitter | receiver | hide

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

accesslIntervals

accessintervals

Package: satelliteScenario

Intervals during which access status is true

Syntax

int = accessIntervals(ac)

Description

int = accessIntervals(ac) returns a table of intervals during which the access status
corresponding to each access object in the input vector is true.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime, stopTime, sampleTime);
lat [10];

lon [-30];

gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 10;

rightAscension0OfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc, semiMajorAxis, eccentricity, inclination,
rightAscension0fAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8x8 table

Source Target IntervalNumber StartTime EndTi
"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020

2-109

2 Functions

"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

sommunity

Input Arguments

ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of a Access objects.

2-110

accesslIntervals

Outputs Arguments

int — Intervals during which access is true
table

Intervals during which access is true, returned as a table.

Each row of the table denotes a specific interval, and the columns of the table are named Source,
Target, IntervalNumber, StartTime, EndTime, Duration (in seconds), StartOrbit, and
EndOrbit. Source and Target are the names of the first and last node, respectively, defining the
access analysis.

» IfSource is a satellite or an object that is directly or indirectly attached to a satellite, then
StartOrbit and EndOrbit correspond to the satellite associated with Source.

» If Target is a satellite or an object that is directly or indirectly attached to a satellite, then
StartOrbit and EndOrbit correspond to the satellite associated with Target. Otherwise,
StartOrbit and EndOrbit are NaN because they are associated with ground stations.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-111

2 Functions

orbitalElements

Package: matlabshared.satellitescenario

Orbital elements of satellites in scenario

Syntax

elements = orbitalElements(sat)

Description

elements = orbitalElements(sat) returns the orbital elements of the specified satellite sat.

Input Arguments

sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

Output Arguments

elements — Orbital elements
structure

Orbital elements of input sat, returned as a structure. The fields of the structure depend on the orbit
propagator chosen using the OrbitPropagator property of the satelliteScenario object.

For more information regarding orbital elements, see “Orbital Elements”.

Two Body Keplerian
The two-body-keplerian orbit propagator has these fields:

* SemiMajorAxis

* Eccentricity

* Inclination

* RightAscensionOfAscendingNode
* ArgumentOfPeriapsis

* TrueAnomaly

* Period

SGP4 and SDP4
The sgp4 and sdp4 orbit propagators have these fields:

* Eccentricity

2-112

orbitalElements

* Inclination

+ RightAscensionOfAscendingNode
* ArgumentOfPeriapsis

* MeanAnomaly

* MeanMotion

* Epoch

* BStar

* Period

The orbital elements represent the mean values at Epoch.

Ephemeris
The ephemeris propagator has these fields:

* EphemerisStartTime
* EphemerisStopTime
* PositionTimeTable
* VelocityTimeTable

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions

access | groundStation | conicalSensor | transmitter | receiver | show | play |

satellite

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

2-113

2 Functions

2-114

accessStatus

Package: matlabshared.satellitescenario

Status of access between first and last node defining access analysis

Syntax

s = accessStatus(ac)
s = accessStatus(ac,timeln)
[s,timeOut] = accessStatus()

Description

s = accessStatus(ac) returns the access status history between the first and last node defining
each access object in the input vector.

s = accessStatus(ac,timeln) returns the status of each access analysis object at the specified
datetime in timeIn.

[s,timeOut] = accessStatus() returns the status of each access analysis object and the

corresponding datetime in Universal Time Coordinated (UTC).

Input Arguments

ac — Access analysis
row vector of Access objects

Access analysis, specified as a row vector of Access objects.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

Outputs Arguments

s — Access analysis status
scalar or row vector of Logical values

Access analysis status, returned as a scalar or row vector of Logical values. If timeIn is specified,
s is a row vector, otherwise, the output is a scalar. The status at a given instant is 1 (true) if access
exists between each pair of adjacent nodes defined by Sequence. For example, in a given pair, say
defined by nodel and node2, nodel has access to node2 and vice versa.

+ If anode is a satellite, then the satellite has access to the adjacent node if both nodes are in line of
sight of each other.

accessStatus

» Ifanode is a ground station, then the ground station has access to the adjacent node if the
elevation angle of the node with respect to the ground station is greater than or equal to the
MinElevationAngle property of GroundStation.

+ Ifanode is a conical sensor, then the conical sensor has access to the adjacent node if the latter is
in the field of view of the former. If the conical sensor is attached to a ground station directly or
via a gimbal, then the elevation angle of the adjacent node with respect to the ground station must
be greater than or equal to the MinElevationAngle property of GroundStation.

timeOut — Time samples of output access status
scalar | vector

Time samples of the output access status, returned as a scalar or vector. If the time history of the
access status is returned, timeOut is a row vector.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-115

2 Functions

2-116

states

Package: matlabshared.satellitescenario

Position and velocity of satellite

Syntax

pos = states(sat)
[pos,velocity] = states(sat)

[1 = states(sat,timeln)

[1 = states(___ ,'CoordinateFrame',C)
[pos,velocity,timeOut] = states()
Description

pos = states(sat) returns a 3-by-n matrix with the position history of the satellite sat in the
Geocentric Celestial Reference Frame (GCRF), where n is the number of time samples in the satellite
scenario simulation.

[pos,velocity] = states(sat) returns a 3-by-n matrix with the position and velocity history of
satellite in GCRF.

[] = states(sat,timeln) also returns the outputs at the times specified by timeIn. Specify
any output argument combinations from previous syntaxes.

[1 = states(,'CoordinateFrame',C) returns the outputs in the coordinates specified
by C.
[pos,velocity,timeOut] = states() returns the position and velocity history of the

satellite and the corresponding time in Universal Time Coordinated (UTC).

Examples

Obtain States of Satellite in ECEF Frame
Create a satellite scenario object.

sc = satelliteScenario;

Add a satellite to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
sat = satellite(sc,tleFile);

Obtain the position and velocity of the satellite in the Earth-centered Earth-fixed (ECEF) frame
corresponding to May 25, 2021, 10:30 PM UTC.

time = datetime(2021,5,25,22,30,0);
[position,velocity] = states(sat(l),time,"CoordinateFrame", "ecef")

states

position = 3x1
107 x

-0.9431
-3.0675
2.7404

velocity = 3x1
103 x

-1.2166
0.4198
-1.6730

Input Arguments

sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

C — Coordinate frame
'ecef' | 'inertial' | 'geographical'’

Coordinate frame in which the outputs are returned, specified as 'ecef', 'inertial’, or
'geographical’.

* The 'ecef' option returns the coordinates in the Earth Centered Earth Fixed (ECEF) frame. For
more information on ECEF frames, see “Earth-Centered Earth-Fixed Coordinates”.
* The 'inertial' option returns the coordinates in the GCRF frame.

* The 'geographic' option returns the position as [lat; lon; altitude], where lat and lon are
latitude and longitude in degrees, and altitude is the height above the wgs84 ellipsoid in meters.
The velocity returned is ECEE defined in the local North-East-Down (NED) frame.

Output Arguments

pos — Position history
scalar | vector | matrix | N-D array

Position history of the satellite, returned as a scalar, vector, matrix, or N-D array in the GCRF frame.
Units are in meters.

velocity — Velocity history
scalar | vector | matrix | N-D array

2-117

2 Functions

Velocity history of the satellite, returned as a scalar, vector, matrix, or N-D array in the GCRF frame.
Units are in meters/second.

timeOut — Time samples of position and velocity
scalar | vector

Time samples of the position and velocity of the satellite, returned as a scalar or vector. If time
histories of the position and velocity of the satellite are returned, timeQut is a row vector.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | access

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-118

gimbalAngles

gimbalAngles

Steering angles of gimbal

Syntax

az = gimbalAngles(gim)

[az,el] = gimbalAngles(gim)
[az,el,timeOut] = gimbalAngles(gim)
[1 = gimbalAngles(gim,timeln)
Description

az = gimbalAngles(gim) returns the gimbal azimuth of the specified gimbal, in degrees. The
gimbal is steered to the desired pointing direction by first rotating it about its body z - axis (gimbal
azimuth) and secondly rotating it about its body y - axis (gimbal elevation).

[az,el] = gimbalAngles(gim) returns the gimbal azimuth and gimbal elevation of the specified
gimbal.

[az,el,timeOut] = gimbalAngles(gim) also returns the corresponding time in UTC.

[1 = gimbalAngles(gim,timeIn) returns the gimbal azimuth and gimbal elevation
(depending on the specified output arguments) of the gimbal at the specified time. If you do not
specify a time zone, the time zone is assumed to be Universal Time Coordinated (UTC).

Input Arguments

gim — Gimbal
scalar Gimbal object

Gimbal whose steering angle is being calculated, specified as a scalar Gimbal object.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

Output Arguments

az — Gimbal azimuth
scalar | row vector

Gimbal azimuth, returned as a scalar or row vector. This represents the angle of rotation of the
gimbal about its z-axis.

Values are specified in degrees in the interval [-180, 180]. The vector elements correspond to the time
samples from the satellite scenario StartTime to StopTime properties, as specified by the SampleTime
property.

2-119

2 Functions

2-120

el — Gimbal elevation
scalar | row vector

Gimbal elevation, returned as a scalar or row vector. This represents the angle of rotation of the
gimbal about its y-axis.

Values are specified in degrees in the closed interval [0, 180]. The vector elements correspond to the
time samples from the satellite scenario StartTime to StopTime properties, as specified by the
SampleTime property.

timeOut — Time samples between start and stop time of scenario
scalar | vector

Time samples between start and stop time of the scenario, returned as a scalar or vector. If az and el
histories are returned, timeQut is a row vector.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

show

show

Package: matlabshared.satellitescenario

Show object in satellite scenario viewer

Syntax

show(item)
show(item,v)

Description
show(item) shows the item on all open Satellite Scenario Viewers.

show(item,v) shows the graphic on the Satellite Scenario Viewer specified by v.

Examples

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];

inclination = [0; 101];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination,
rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat =
1x2 Satellite array with properties:

Name

ID
ConicalSensors
Gimbals
Transmitters
Receivers
Accesses
GroundTrack

2-121

2 Functions

Orbit
OrbitPropagator
MarkerColor
MarkerSize
ShowLabel
LabelFontSize
LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat, 'LeadTime',3600)

ans=1x2 object
1x2 GroundTrack array with properties:

LeadTime
TrailTime
LineWidth
TraillLineColor
LeadLineColor
VisibilityMode

play(sc)

2-122

show

ounce: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CHNES/Airbus DS, USDA, USGES, AsnGRID, IGN, and the GIS User Community

Input Arguments

item — Item
Satellite object | GroundStation object | ConicalSensor object | GroundTrack object |
FieldofView object | Access object | Link object

Satellite, GroundStation, ConicalSensors, GroundTrack, FieldOfView, Access or Link
object. These objects must belong to the same satelliteScenario object.

Note If item is a satellite or a ground station, then the associated transmitters, receivers and
gimbals are also displayed on the viewer.

v — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

2-123

2 Functions

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | hide | access | groundStation | conicalSensor | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-124

hide

hide
Package: matlabshared.satellitescenario

Hides satellite scenario entity from viewer

Syntax

hide(item)

hide(item,v)

Description

hide(item) hides item from all open satellite scenario viewers.

hide(item, v) hides the specified satellite scenario entity on the satellite scenario viewer specified
by v.

Input Arguments

item — Item

Satellite object | GroundStation object | ConicalSensor object | GroundTrack ohject |

FieldofView object | Access object | Link object

Satellite, GroundStation, ConicalSensors, GroundTrack, FieldOfView, Access or Link
object. These objects must belong to the same satelliteScenario object.

v — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, vector, or array of satelliteScenarioViewer
objects.

See Also

Objects
satellite | satelliteScenarioViewer

Functions
play | show | satelliteScenario | access | groundStation | hideAll | showAll

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-125

2 Functions

ebno

Package: satcom.satellitescenario

Eb/No at final node of link

Syntax

e ebno (lnk)
e ebno(lnk,timeln)
[e,timeOut] = ebno()

Description

e = ebno(1lnk) returns history of received energy per bit to noise power spectral density (Eb/No)
values at the final node in a possibly multihop link.

e = ebno(lnk,timelIn) returns the received Eb/No values at the specified time.

[e,timeOut] = ebno() returns the received Eb/No values and the corresponding times in
Universal Time Incorporated (UTC).

Input Arguments

Ink — Link analysis
Link object scalar

Link analysis object, specified as a Link object scalar.

timeIn — Time at which output is calculated
scalar

Time at which the output is calculated, specified as a scalar. If you do not specify a time zone, then
the time zone is assumed to be UTC.

Output Arguments

e — Eb/No
scalar | vector

Eb/No, returned as a scalar or vector. If timeIn is not specified, e is a row vector.

timeOut — Time samples of output Eb/No
scalar | vector

Time samples of the output Eb/No, returned as a scalar or vector. If time history of Eb/No is returned,
timeOut is a row vector.

2-126

ebno

See Also

Objects
satelliteScenario | satelliteScenarioViewer | Link

Functions
show | play | hide

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

2-127

2 Functions

2-128

access

Package: matlabshared.satellitescenario

Add access analysis objects to satellite scenario

Syntax

access(objl,...,0bjN)

ac = access(objl,...,0bjN)

ac = access(__ ,'Viewer',Viewer)

Description
access(objl,...,objN) adds Access objects defined by obj1, obj2, and so on.

ac = access(objl,...,0bjN) returns a handle to the added access objects. The length of the

vector corresponds to the number of Access objects added to the handle to the added access.

ac = access(, 'Viewer',KViewer) sets the viewer in addition to any input argument
combination from previous syntaxes. For example, 'Viewer', v1 picks the viewer v1.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime, stopTime, sampleTime);
lat [10];

lon [-307;

gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 10;

rightAscension0OfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc, semiMajorAxis, eccentricity, inclination,
rightAscension0OfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

access

intvls=8x8 table

Source Target IntervalNumber StartTime EndTi
"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020
"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

2-129

2 Functions

2-130

Input Arguments

objl,...,0bjN — Satellite, ground station, or conical sensor
Satellite object | GroundStation object | ConicalSensor object

Satellite, GroundStation, or ConicalSensors object. These objects must belong to the same
satelliteScenario object. The function adds the access analysis object to the Accesses property
ofobjl,...,0bjN.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Viewer',v1 picks the viewer v1.

Viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

Output Arguments

ac — Access analysis
Access object scalar

Access analysis between input objects, returned as an Access object scalar.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

groundStation

groundStation

Package: matlabshared.satellitescenario

Add ground station to satellite scenario

Syntax

groundStation(scenario)
groundStation(scenario, lat, lon)
groundStation(,Name,Value)
gs = groundStation()

Description

groundStation(scenario) adds a default GroundStation object to the specified satellite
scenario.

groundStation(scenario, lat, lon) sets the Latitude and Longitude properties of the ground
station to lat and lon, respectively. lat and Lon must be of the same length. This length specifies
the number of ground stations that the function adds to the input scenario. Together, lat and lon
indicate the locations of the ground stations.

groundStation(,Name, Value) sets options using one or more name-value arguments in
addition to any input argument combination from previous syntaxes. For example,
'MinElevationAngle', 10 specifies a minimum elevation angle of 10 degrees.

gs = groundStation() returns a vector of handles to the added ground stations. Specify any
input argument combination from previous syntaxes.

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime, stopTime, sampleTime);
lat [10];

lon [-30];

gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;
eccentricity = 0;

inclination = 10;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;

2-131

2 Functions

trueAnomaly = 0;
sat = satellite(sc, semiMajorAxis, eccentricity, inclination,
rightAscension0fAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8x8 table

Source Target IntervalNumber StartTime EndTir
"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020
"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

2-132

groundStation

Input Arguments

scenario — Satellite scenario
satelliteScenario object

Satellite scenario, specified as a satelliteScenario object.

lat, lon — Latitude and longitude
real-valued scalar | real-valued vector

Latitude and longitude of the ground station, specified as a real-valued scalar or real-valued vector.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

2-133

2 Functions

2-134

Example: 'MinElevationAngle', 10 specifies a minimum elevation angle of 10 degrees.

Viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

Name — groundStation name
"groundStation idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

groundStation name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.
» If only one groundStation is added, specify Name as a string scalar or a character vector.

* If multiple groundStations are added, specify Name as a string vector or a cell array of character
vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the groundStation added by the groundStation object
function. If another groundStation of the same name exists, a suffix idx, is added, where idx, is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

Latitude — Geodetic latitude of ground stations
42.3001 (default) | scalar | row vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Geodetic latitude of ground stations, specified as a scalar. Values must be in the range [-90, 90].

+ Ifyou add only one ground station, specify Latitude as a scalar double.

* Ifyou add multiple ground stations, specify Latitude as a vector double whose length is equal to
the number of ground stations being added.

When latitude and longitude are specified as lat, lon inputs to groundStation, Latitude specified as

a name-value argument takes precedence.

Data Types: double

Longitude — Geodetic longitude of ground stations
-71.3504 (default) | scalar | row vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Geodetic longitude of ground stations, specified as a scalar or a vector. Values must be in the range
[-180, 180].

groundStation

» If you add only one ground station, specify longitude as a scalar.

» Ifyou add multiple ground stations, specify longitude as a vector whose length is equal to the
number of ground stations being added.

When longitude and longitude are specified as lat, lon inputs to groundStation, longitude specified

as a name-value argument takes precedence.

Data Types: double

Altitude — Altitude of ground station
0 m (default) | scalar | vector

You can set this property only when calling groundStation. After you call groundStation, this property
is read-only.

Altitude of ground stations, specified as a scalar or a vector.

* Ifyou specify Altitude as a scalar, the value is assigned to each ground station in the
groundStation.

» If you specify Altitude as a vector, the vector length must be equal to the number of ground
stations in the groundStation.

When latitude and longitude are specified as lat, lon inputs to groundStation, Latitude specified as
a name-value argument takes precedence.
Data Types: double

MinElevationAngle — Minimum elevation angle
0 (default) | scalar | vector

Minimum elevation angle of a satellite for the satellite to be visible from the ground station, specified
as a scalar or row vector. Values must be in the range [-90, 90]. For access and link closure to be
possible, the elevation angle must be at least equal to the value specified in MinElevationAngle.

» Ifyou specify MinElevationAngle as a scalar, the value is assigned to each ground station in the
groundStation.

» Ifyou specify MinElevationAngle as a vector, the vector length must be equal to the number of
ground stations in the groundStation.

Data Types: double

Output Arguments

gs — Ground station in scenario
GroundStation object

Ground station in the scenario, returned as a GroundStation object belonging to the satellite
scenario specified by the input scenario.

You can modify the GroundStation object by changing its property values. The name-value
arguments used when calling this function correspond to property names.

2-135

2 Functions

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | satellite | access | transmitter | receiver

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”

“Comparison of Orbit Propagators”

“Modeling Satellite Constellations Using Ephemeris Data”

“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

2-136

transmitter

transmitter

Package: matlabshared.satellitescenario

Add transmitter to satellite scenario

Syntax

transmitter(parent)
transmitter(parent,Name,Value)
tx = transmitter()
Description

transmitter(parent) adds a default Transmitter object to the parent which can be a
Satellite, GroundStation or Gimbal.

transmitter(parent,Name,Value) specifies options using one or more name-value arguments.
For example, 'MountingAngle', [20; 35; 10] sets the yaw, pitch, and roll angles of the
transmitter to 20, 35, and 10 degrees, respectively.

tx = transmitter() returns a handle to the added transmitter. Specify any input argument
combination from previous syntaxes.

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020
SampleTime: 60
Viewers: [0x0 matlabshared.satellitescenario.Viewer]
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000;
eccentricity =

0;
inclination = 60;

2-137

mete

deg

2 Functions

2-138

rightAscension0fAscendingNode = 0; % deg
argumentOfPeriapsis = 0; % deg
trueAnomaly = 0; % deg!

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode, ...
argumentOfPeriapsis, trueAnomaly, "Name", "Satellite");

Add a transmitter to the satellite.

frequency = 27e9;

power = 20;

bitRate = 20;

systemLoss = 3;

txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency",frequency, "power", power,...
"BitRate",bitRate, "SystemLoss",systemLoss)

o® o° o o°

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 2
MountingLocation: [0; 0; 0] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal]
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz

BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5;

systemLoss = 3;

rxSat = receiver(sat, "Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemper:
"SystemLoss",systemLoss)

rxSat =
Receiver with properties:

Name: Satellite Receiver
ID: 3
MountingLocation: [0; O; O] meters
MountingAngles: [0; O; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
SystemLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % met
apertureEfficiency = 0.5;

gaussianAntenna(txSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

transmitter

gsl = groundStation(sc, "Name","Ground Station 1");

latitude = 52.2294963;

longitude = 0.1487094;

gs2 = groundStation(sc,latitude, longitude, "Name","Ground Station 2");

% degrees
% degrees

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; ©0; -5];
mountingAngles = [0; 180; 0];
gimbalGsl
gimbalGs2

Track the satellite using the gimbals.

pointAt(gimbalGsl,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9;
power = 40;
bitRate = 20;

o° o°

o 3
D

gimbal(gsl, "MountingLocation",mountinglLocation, "MountingAngles",mountingAngles);
gimbal(gs2, "MountinglLocation",mountinglLocation, "MountingAngles",mountingAngles);

o® o o°

txGsl = transmitter(gimbalGsl, "Name", "Ground Stationn 1 Transmitter","Frequency",frequency,...

"Power",power, "BitRate",bitRate);

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14;

% dB

rxGs2 = receiver(gimbalGs2, "Name","Ground Station 2 Receiver","RequiredEbNo", requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGsl,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Add link analysis to transmitter txGs1.
Ink = 1ink(txGsl, rxSat, txSat, rxGs2)

lnk =
Link with properties:

Sequence: [8 3 2 9]

LineWidth: 1
LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.
linkIntervals(lnk)

ans=4x8 table
Source Target IntervalNumber

Sta

"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 1
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 2

2-139

25-Nov - 2
25-Nov - 2

2 Functions

2-140

w

"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver"
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 4

Visualize the link using the Satellite Scenario Viewer.

play(sc);

4 Satellte SEenand Viewer = o

. Ground SBatior

. Ground Station 1

-
S0
Fore 25 MO0 Souroe: Ewri, Maxr, Geoliye, Carthutar Geographics, GHIS0krtn (85, LIS0A, USHES, Asrcisn, K, and s (55 User Gommanity

A O B LT -
| Al e | w o0l UTC Mo 35 3 06 S0 UTC How 35 2020 I1J'MM1JTE: o 25 100 180008 UTC Mo 26 M

Input Arguments

parent — Element of scenario to which transmitter is added
Satellite object | GroundStation object | Gimbal object

Element of scenario to which the transmitter is added, specified as a Satellite, GroundStation,
or Gimbal object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'MountingAngle', [20; 35; 10] sets the yaw, pitch, and roll angles of the transmitter
to 20, 35, and 10 degrees, respectively.

Name — transmitter name
"transmitter idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

25-Nov - 2
25-Nov - 2

transmitter

You can set this property only when calling transmitter. After you call transmitter, this property is
read-only.

transmitter name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.
» If only one transmitter is added, specify Name as a string scalar or a character vector.

* If multiple transmitters are added, specify Name as a string vector or a cell array of character
vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the transmitter added by the transmitter object function. If
another transmitter of the same name exists, a suffix idx, is added, where idx;, is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; O; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; O; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that

order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

Example: [0; 30; 60]

Antenna — Antenna object associated with transmitter
gaussianAntenna object | antenna ohject

Antenna object associated with the transmitter, specified as an antenna object. This object can be
the default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array System
Toolbox. The default gaussian antenna has a dish diameter of 1 m and an aperture efficiency of 0.65.

SystemLoss — Total loss in transmitter
5 (default) | positive scalar

Total loss in the transmitter, specified as a real positive scalar. Units are in dB.

Frequency — Transmitter frequency
14e9 (default) | positive scalar

Transmitter frequency, specified as a positive scalar. Units are in Hz.

BitRate — Bit rate of transmitter
10 (default) | real positive scalar

Bit rate of the transmitter, specified as a real positive scalar. Units are in Mbps.

2-141

2 Functions

2-142

Power — Power of high power amplifier
12 (default) | real positive scalar

Power of the high power amplifier, specified as a real positive scalar. Units are in dbW.

Output Arguments

tx — Transmitter
Transmitter object

Transmitter attached to parent, returned as a Transmitter object.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | show | groundStation | access | link | receiver | hide

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

receiver

receiver

Package: matlabshared.satellitescenario

Add receiver to satellite scenario

Syntax

receiver(parent)
receiver(parent,Name,Value)
rx = receiver()

Description

receiver(parent) adds a default Receiver object to the parent which can be a Satellite,
GroundStation or Gimbal.

receiver(parent,Name,Value) specifies options using one or more name-value arguments. For
example, 'MountingAngle', [20; 35; 10] sets the yaw, pitch, and roll angles of the transmitter
to 20, 35, and 10 degrees, respectively.

rx = receiver() returns a handle to the added receiver. Specify any input argument
combination from previous syntaxes.

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020
SampleTime: 60
Viewers: [0x0 matlabshared.satellitescenario.Viewer]
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000;
eccentricity =

0;
inclination = 60;

2-143

mete

deg

2 Functions

2-144

rightAscension0fAscendingNode = 0; % deg
argumentOfPeriapsis = 0; % deg
trueAnomaly = 0; % deg!

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode, ...
argumentOfPeriapsis, trueAnomaly, "Name", "Satellite");

Add a transmitter to the satellite.

frequency = 27e9;

power = 20;

bitRate = 20;

systemLoss = 3;

txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency",frequency, "power", power,...
"BitRate",bitRate, "SystemLoss",systemLoss)

o® o° o o°

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 2
MountingLocation: [0; 0; 0] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal]
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz

BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5;

systemLoss = 3;

rxSat = receiver(sat, "Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemper:
"SystemLoss",systemLoss)

rxSat =
Receiver with properties:

Name: Satellite Receiver
ID: 3
MountingLocation: [0; O; O] meters
MountingAngles: [0; O; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntenna]
SystemLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % met
apertureEfficiency = 0.5;

gaussianAntenna(txSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

receiver

gsl = groundStation(sc, "Name","Ground Station 1");

latitude = 52.2294963;

longitude = 0.1487094;

gs2 = groundStation(sc,latitude, longitude, "Name","Ground Station 2");

% degrees
% degrees

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; ©0; -5];
mountingAngles = [0; 180; 0];
gimbalGsl
gimbalGs2

Track the satellite using the gimbals.

pointAt(gimbalGsl,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9;
power = 40;
bitRate = 20;

o° o°

o 3
D

gimbal(gsl, "MountingLocation",mountinglLocation, "MountingAngles",mountingAngles);
gimbal(gs2, "MountinglLocation",mountinglLocation, "MountingAngles",mountingAngles);

o® o o°

txGsl = transmitter(gimbalGsl, "Name", "Ground Stationn 1 Transmitter","Frequency",frequency,...

"Power",power, "BitRate",bitRate);

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14;

% dB

rxGs2 = receiver(gimbalGs2, "Name","Ground Station 2 Receiver","RequiredEbNo", requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGsl,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Add link analysis to transmitter txGs1.
Ink = 1ink(txGsl, rxSat, txSat, rxGs2)

lnk =
Link with properties:

Sequence: [8 3 2 9]

LineWidth: 1
LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.
linkIntervals(lnk)

ans=4x8 table
Source Target IntervalNumber

Sta

"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 1
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 2

2-145

25-Nov - 2
25-Nov - 2

2 Functions

2-146

w

"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver"
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 4

Visualize the link using the Satellite Scenario Viewer.

play(sc);

4 Satellte SEenand Viewer = o

. Ground SBatior

. Ground Station 1

-
S0
Fore 25 MO0 Souroe: Ewri, Maxr, Geoliye, Carthutar Geographics, GHIS0krtn (85, LIS0A, USHES, Asrcisn, K, and s (55 User Gommanity

A O B LT -
| Al e | w o0l UTC Mo 35 3 06 S0 UTC How 35 2020 I1J'MM1JTE: o 25 100 180008 UTC Mo 26 M

Input Arguments

parent — Element of scenario to which receiver is added
Satellite object | GroundStation object | Gimbal object

Element of scenario to which the receiver is added, specified as a Satellite, GroundStation, or
Gimbal object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN,ValueN.

Example: 'MountingAngle', [20; 35; 10] sets the yaw, pitch, and roll angles of the receiver to
20, 35, and 10 degrees, respectively.

Name — receiver name
"receiver idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

25-Nov - 2
25-Nov - 2

receiver

You can set this property only when calling receiver. After you call receiver, this property is read-only.

receiver name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

» If only one receiver is added, specify Name as a string scalar or a character vector.

+ If multiple receivers are added, specify Name as a string vector or a cell array of character vectors.
The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

In the default value, idx is the count of the receiver added by the receiver object function. If
another receiver of the same name exists, a suffix idx, is added, where idx; is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; O; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; O; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

Example: [0; 30; 60]

Antenna — Antenna object associated with receiver
gaussianAntenna object | antenna obhject

Antenna object associated with the receiver, specified as an antenna object. This object can be the
default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array System Toolbox.
The default gaussian antenna has a dish diameter of 1 m and an aperture efficiency of 0.65.

SystemLoss — Total loss in receiver
5 (default) | positive scalar

Total loss in the receiver, specified as a real positive scalar. Units are in dB.

GainToNoiseTemperatureRatio — Gain to noise temperature ratio
3 (default) | scalar

Gain to noise temperature ratio of the antenna, specified as the comma-separated pair consisting of
'GainToNoiseTemperatureRatio' and a scalar. Units are in dB/K.

RequiredEbNo — Lowest Eb/No necessary for link closure
10 (default) | positive scalar

Lowest energy per bit to noise power spectral density ratio (Eb/No) necessary for link closure,
specified as the comma-separated pair consisting of 'RequiredEbNo' and a positive scalar. Units
are in dB.

2-147

2 Functions

Output Arguments

rx — Receiver
Receiver object

Receiver attached to parent, returned as a Receiver object.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | show | groundStation | transmitter | link | access | hide

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-148

gimbal

gimbal

Add gimbal to satellite or ground station

Syntax

gimbal(parent)
gimbal(parent,Name,Value)
gimbal()

Description

gimbal(parent) adds a default Gimbal object to parent, which can be a satellite, ground station,
or gimbal. A gimbal can dynamically change orientation independent of the parent. Transmitters,
receivers, and conical sensors can be mounted on the gimbals.

gimbal(parent,Name,Value) specifies options using one or more name-value arguments.

gim = gimbal() returns a handle to the added gimbal. Specify any input argument combination
from previous syntaxes.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);
stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)
sc =
satelliteScenario with properties:
StartTime: 21-Jun-2021 08:55:00
StopTime: 26-Jun-2021 08:55:00
SampleTime: 60
Viewers: [0x0 matlabshared.satellitescenario.Viewer]
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;

eccentricity = 0;
inclination = 50;

rightAscensionOfAscendingNode = 0;

argumentOfPeriapsis

= 0;

2-149

o°

o® o° o°

me-

de
de
de

2 Functions

trueAnomaly = 50;
sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly)

sat =
Satellite with properties:

Name: Satellite 1
ID: 1
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sgp4
MarkerColor: [1 0 0]
MarkerSize: 10
ShowLabel: true
LabelFontColor: [1 0 O]
LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph",
"Latitude",42.3001, "Longitude",-71.3504) % degrees

gs =
GroundStation with properties:

Name: Location To Photograph
ID: 2
Latitude: 42.3 degrees
Longitude: -71.35 degrees
Altitude: 0 meters
MinElevationAngle: 0 degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
MarkerColor: [0 1 1]
MarkerSize: 10
ShowLabel: true
LabelFontColor: [0 1 1]
LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.
gimbal(sat)

(o)
Il

g:
Gimbal with properties:

Name: Gimbal 3
ID: 3

2-150

deq

gimbal

MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.
pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor

conicalSensor(g, "MaxViewAngle",60)

camSensor =
ConicalSensor with properties:

Name: Conical sensor 4
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
MaxViewAngle: 60 degrees
Accesses: [1x0 matlabshared.satellitescenario.Access]
FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac =
Access with properties:

Sequence: [4 2]

LineWidth: 1
LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

2-151

2 Functions

4 Satellae Scenans Viewer = o

Souroe: D, Maxw, ool ye, Latheter Geographeos, TR0t 06, LITGOA, LSO, AsmolE0, W0, and) T CHLY Usew Communty

2-152

, dun 23 T 00008 UTC

Jun 4 M 50:08 08 UTC
|

Jeam 16 32 e 0 00
|

Determine the intervals during which the camera can see the geographical site.

t =

t=35x8 table

accessIntervals(ac)

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00
"Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00
"Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00
"Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00
"Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00

sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00

"Conical

Calculate the maximum revisit time in hours.

gimbal

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(l:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667
Visualize the revisit times that photographs the location.

play(sc);

. Satellte Scenamd Viewer

Souroe: L, Maxs? Cieol'ys, [artheter Geeographics, CNI Skt 05, LISDA, LIS, AsmoCERID, MM, nd T G35 User Community
dun 23 2ECHT OBl B UTC Juann M 80:04 08 UTC Jeam 6 302 e 0000
| |

Input Arguments

parent — Element of scenario to which gimbal is added
Satellite object | GroundStation object | Gimbal object

Element of scenario to which the gimbal is added, specified as a Satellite, GroundStation, or
Gimbal object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'MountingAngle', [20; 35; 10] sets the yaw, pitch, and roll angles of gimbal to 20, 35,
and 10 degrees, respectively.

2-153

2 Functions

2-154

Name — gimbal name
"gimbal 1dx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

gimbal name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.
» If only one gimbal is added, specify Name as a string scalar or a character vector.

* If multiple gimbals are added, specify Name as a string vector or a cell array of character vectors.
The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

In the default value, idx is the count of the gimbal added by the gimbal object function. If another
gimbal of the same name exists, a suffix idx, is added, where idx; is an integer that is incremented
by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

MountingLocation — Mounting location with respect to parent
[0; O; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; O; 0] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

Example: [0; 30; 60]

Output Arguments

gim — Gimbal
Gimbal object

Gimbal attached to parent, returned as a Gimbal object.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | access | groundStation | satellite | conicalSensor | hide

Topics
“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

gimbal

“Satellite Scenario Basics”

Introduced in R2021a

2-155

2 Functions

2-156

fieldOfView

Package: matlabshared.satellitescenario

Visualize field of view of conical sensor

Syntax

fieldOfView(sensor)
fieldOfView(sensor,Name,Value)
fov = fieldOfView()

Description

fieldOfView(sensor) adds a FieldOfView object to the specified conical sensor, and draws
contours on the Earth. Each contour represents the field of view of a conical sensor in sensor based
on the current state of the scenario.

Locations inside the contour are inside the field of view. If no viewer is open, a new viewer is
launched, and the field of view contours are shown in the open viewer. If a viewer is already open, the
field of view contours are added to it. The contours are the lines of intersection of the surface of the
earth and the field of view cone. The half angle of the field of view cone is equal to the MaxViewAngle
property of the conical sensor, and the axis of the cone is the z-axis (or boresight) of the conical
sensor. The vertex of the cone is located at the position of the conical sensor. The cone becomes wider
along the positive body z-axis of the conical sensor.

fieldOfView(sensor,Name,Value) specifies options by using one or more name-value
arguments.

fov = fieldOfView() returns a vector of handles to the added field of view graphic objects.
Specify any input combination from previous syntaxes.

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);

stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sC =
satelliteScenario with properties:

StartTime: 21-Jun-2021 08:55:00
StopTime: 26-Jun-2021 08:55:00
SampleTime: 60
Viewers: [0x0 matlabshared.satellitescenario.Viewer]

fieldOfView

Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;

eccentricity = 0;

inclipation = 50;

rightAscension0fAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 50;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscension0OfAscendingNode,
argumentOfPeriapsis, trueAnomaly)

sat =
Satellite with properties:

Name: Satellite 1
ID: 1
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sgp4
MarkerColor: [1 0 0]
MarkerSize: 10
ShowLabel: true
LabelFontColor: [1 0 0]
LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", .
"Latitude",42.3001, "Longitude",-71.3504) % degrees

gs =
GroundStation with properties:

Name: Location To Photograph
ID: 2
Latitude: 42.3 degrees
Longitude: -71.35 degrees
Altitude: 0 meters
MinElevationAngle: 0 degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
MarkerColor: [0 1 1]
MarkerSize: 10
ShowLabel: true
LabelFontColor: [0 1 1]

2-157

o°

d° o° o° o°

me’

deq
deq
deq
deq

2 Functions

2-158

LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

gimbal(sat)

(o]
1l

g:
Gimbal with properties:

Name: Gimbal 3
ID: 3
MountingLocation: [Q; 0; O] meters
MountingAngles: [0; 0; 0] degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g, "MaxViewAngle",60)

camSensor =
ConicalSensor with properties:

Name: Conical sensor 4
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
MaxViewAngle: 60 degrees
Accesses: [1x0 matlabshared.satellitescenario.Access]
FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac

access(camSensor,gs)

ac =
Access with properties:

Sequence: [4 2]

LinewWidth: 1
LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

fieldOfView

4 Satellae Scenans Viewer = o

Souroe: D, Maxw, ool ye, Latheter Geographeos, TR0t 06, LITGOA, LSO, AsmolE0, W0, and) T CHLY Usew Communty

, dun 23 T 00008 UTC

Jun 4 M 50:08 08 UTC
|

Jeam 16 32 e 0 00
|

Determine the intervals during which the camera can see the geographical site.

t =

t=35x8 table

accessIntervals(ac)

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00
"Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00
"Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00
"Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00
"Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00

sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00

"Conical

Calculate the maximum revisit time in hours.

2-159

2 Functions

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(l:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime 12.6667
Visualize the revisit times that photographs the location.

play(sc);

4 Satellae S enams Viewer —]

Sourme: Eu, Maxe? Geoliys, Dartheter Geographics, CHE S0t 05, LSO, LSO, AercfaI0, KM, and f (25 User Commanity
Jun X3 20CHT 00000 88 UTC Jun M M 80:00°08 UTC Jusm 6 202 G0 0000 1
| |

Input Arguments

sensor — Conical sensor
ConicalSensor object

Conical sensor, specified as a ConicalSensor object.
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and

Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, .. .,NameN, ValueN.

Example: 'LineWidth', 2.5 sets the line width of the field of view to 2.5 pixels.

2-160

fieldOfView

Viewer — Satellite scenario viewer
row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

NumContourPoints — Number of contour points
40 (default) | integer greater than or equal to 4

Number of contour points used to draw the contour of the field of view, specified as an integer
greater than or equal to 4.
Data Types: double

LineWidth — Visual width of field of view contour
1 (default) | scalar in the range (0 10]

Visual width of the field of view contour in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of field of view contour
[0 1 0] (default) | RGB triplet | RGB triplet |string scalar of color name | character
vector of color name

Color of field of view contour, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '"#FFO000' —

'green' ‘g’ [0 1 0] '#00FF0O0'

'blue’ ‘b [0 0 1] '#000OFF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ m' [1 0 1] '"#FFOOFF' I

'yvellow' 'y [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000" E—

2-161

2 Functions

2-162

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code
'white' 'w' [11 1] '"#FFFFFF']
'none’ Not Not applicable Not applicable No color
applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many

types of plots

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120"'

[0.4940 0.1840 0.5560] "#7E2F8E' I
[0.4660 0.6740 0.1880] '#77AC30" I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Example: 'blue’

Example: [0

0 1]

Example: '#0000FF'

Output Arguments

fov — Field of view of conical sensor
row vector of FieldOfView objects

Field of view of conical sensor, returned as a row vector of Field0OfView objects.

See Also

Objects

satelliteScenario | satelliteScenarioViewer

Functions

show | play | hide | access | groundStation | conicalSensor | transmitter | receiver

Topics

“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

link

link
Package: satcom.satellitescenario

Add link analysis objects to transmitter

Syntax

link(obj1,...,0bjN)
lnk = link(__)

Description
link(objl,...,0bjN) adds Link objects defined by obj1, obj2, and so on..

Ink = link(__) returns a handle to the added Link object.

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sc =
satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020
SampleTime: 60
Viewers: [0x0 matlabshared.satellitescenario.Viewer]
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000;
eccentricity = 0;

inclination = 60;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode, ...

argumentOfPeriapsis, trueAnomaly, "Name", "Satellite");

Add a transmitter to the satellite.

2-163

o°

o® o o o°

met

deg
deg
deg
deg

2 Functions

2-164

frequency = 27e9;

power = 20;

bitRate = 20;

systemLoss = 3;

txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency", frequency, "power",power, ...
"BitRate",bitRate, "SystemLoss",systemlLoss)

o® o o o°

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 2
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz

BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5;

systemLoss = 3;

rxSat = receiver(sat, "Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemper:
"SystemLoss",systemLoss)

rxSat =
Receiver with properties:

Name: Satellite Receiver
ID: 3
MountingLocation: [0; O; O] meters
MountingAngles: [0; O; O] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal
SystemLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % met
apertureEfficiency = 0.5;

gaussianAntenna(txSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc, "Name","Ground Station 1");

latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude, longitude, "Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

link

mountinglLocation = [0; O; -5];

mountingAngles = [0; 180; 0O];

gimbalGsl = gimbal(gsl, "MountinglLocation",mountingLocation, "MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2, "MountinglLocation",mountingLocation, "MountingAngles",mountingAngles);

o o°

o 3
N0g

Track the satellite using the gimbals.

pointAt(gimbalGsl,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalGsl, "Name","Ground Stationn 1 Transmitter","Frequency", frequency,...
"Power",power, "BitRate",bitRate);

o® o o°

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2, "Name","Ground Station 2 Receiver","RequiredEbNo", requiredEbNo);

Define the antenna specifications of the ground stations.
dishDiameter = 5; % meters

gaussianAntenna(txGsl,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Add link analysis to transmitter txGs1.

1nk

link(txGsl, rxSat, txSat, rxGs2)

lnk =
Link with properties:

Sequence: [8 3 2 9]

LineWidth: 1
LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.
linkIntervals(1lnk)

ans=4x8 table
Source Target IntervalNumber Sta

25-Nov - 2
25-Nov - 2
25-Nov - 2
25-Nov - 2

"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver"
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver"
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver"
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver"

A WN =

Visualize the link using the Satellite Scenario Viewer.

play(sc);

2-165

2 Functions

2-166

4 Satellte SEenand Viewer = o

Ground '-,E".:' 10N

) .
. Ground Station 1

-
Sl

Pors 25 2000

o O Bl LT

P 41 e

Shouroe: [, Moow, Dol we, st Geographecs., CRIC S0 O, LIOR, LSS, Aaeo TS 0, WO, mnd) e TG U Community
| w 0088 UTC Moy 25 3030 06 S0 08 UTC P 55 S0 1 8000 UTE e 25 200 180000 UTC Mo 36 i3
) | | |

Input Arguments

objl,...,0bjN — Satellite, ground station, or conical sensor
Transmitter object | Receiver object

Transmitter or Receiver object, specified as separate arguments where the obj1 must be a
Transmitter object and any following arguments can be Transmitter or Receiver objects. These
arguments specify the Sequence of the link. These objects must belong to the same
satelliteScenario object. The function adds the link analysis object to the Link property of obj 1.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'LineWidth', 2.5 sets the line width of the field of view to 2.5 pixels.
Viewer — Satellite scenario viewer

row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

link

Output Arguments

1nk — Link analysis
Link object scalar

Link analysis between input objects, returned as a row vector of Link objects.

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-167

2 Functions

2-168

gaussianAntenna

Package: satcom.satellitescenario

Add Gaussian antennas

Syntax

gaussianAntenna(trx)
gaussianAntenna(trx,Name,Value)
ant = gaussianAntenna()
Description

gaussianAntenna(trx) adds GaussianAntenna object to the specified transmitter or receiver.
The gaussian antenna is assigned to the Antenna property by overwriting it.

gaussianAntenna(trx,Name,Value) adds an antenna and specifies options using one or more
name-value arguments. Enclose each property name in quotes. For example, 'DishDiameter',1.7
sets the dish diameter of the antenna to 1.7 meters upon creation.

ant = gaussianAntenna() adds an antenna and returns a handle to the added
GaussianAntenna object. You can add only one GaussianAntenna to a given Transmitter or
Receiver.

Input Arguments

trx — Transmitter or receiver
Transmitter object | Receiver object

Transmitter or receiver to which the gaussian antenna is added, specified as a Transmitter or
Receiver object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'DishDiameter', 1.7 sets the dish diameter of the antenna to 1.7 meters upon creation.

DishDiameter — Diameter of the antenna dish
1 (default) | positive scalar

You can set this property only when calling gaussianAntenna. After you call gaussianAntenna, this
property is read-only.

Diameter of the Gaussian antenna dish, specified as a real positive scalar. Units are in meters.

ApertureEfficiency — Aperture efficiency of Gaussian antenna
0.65 (default) | scalar in the range (0,1]

gaussianAntenna

You can set this property only when calling gaussianAntenna. After you call gaussianAntenna, this
property is read-only.

Aperture efficiency of the Gaussian antenna, specified as a scalar in the range (0,1].

Output Arguments

ant — Gaussian antenna
GaussianAntenna object scalar

Gaussian antenna added to the specified transmitter or receiver, returned as a GaussianAntenna
object scalar.

See Also

Objects
satelliteScenario

Functions
hide | show | play | satellite | access | groundStation | receiver | transmitter

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

2-169

2 Functions

groundTrack

Package: matlabshared.satellitescenario

Add ground track object to satellite in scenario

Syntax

groundTrack(sat)
groundTrack(_ ,Name,Value)

Description

groundTrack(sat) adds ground track visualization for each satellite in sat based on their current
positions. The ground track begins at the scenario StartTime, and ends at the StopTime. The spacing
between samples that make up the ground track visualization is determined by the scenario
SampleTime. If no viewer is open, a new viewer is launched, and the ground track is displayed. If a
viewer is already open, the ground track is added to that viewer. By default, ground tracks will be
displayed in 2-D.

groundTrack(,Name,Value) adds a groundTrack object by using one or more name-value
pairs. Enclose each property name in quotes.

Examples

Add Ground Track to Satellite in Geosynchronous Orbit

Create a satellite scenario object.

startTime = datetime(2020,5,10);

stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Calculate the semimajor axis of the geosynchronous satellite.
earthAngularVelocity = 0.0000729211585530; % rad/s
orbitalPeriod = 2*pi/earthAngularVelocity; % seconds

earthStandardGravitationalParameter = 398600.4418e9; m~3/s"2
semiMajorAxis = (earthStandardGravitationalParameter*((orbitalPeriod/(2*pi))~2))"~(1/3);

Define the remaining orbital elements of the geosynchronous satellite.

eccentricity = 0;

inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

Add the geosynchronous satellite to the scenario.

2-170

groundTrack

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode, ...
argumentOfPeriapsis, trueAnomaly, "OrbitPropagator", "two-body-keplerian", "Name", "GEO Sat")

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

4 Satellne Senarnd Viewer = o

-

S0
Mkary 10 Source: i, Macr, Geolpe, Larthter Geographics, GGt D5, LIS0A, LSS, AemcCEaD, M4, and e GRS User Gommandy

- 88 UTE Wy 17 050 S5 50,00 UITE Wiy 14 00 68 58 00 UTE
| “«[ul» JFu | e v -

Add a ground track of the satellite to the visualization and adjust how much of the future and history
of the ground track to display.

leadTime = 2*24*3600; % seconds
trailTime = leadTime;
gt = groundTrack(sat,"LeadTime", leadTime,"TrailTime",trailTime)

gt =
GroundTrack with properties:

LeadTime: 172800
TrailTime: 172800
LineWidth: 1

LeadLineColor: [1 0 1]
TrailLineColor: [1 0.5000 0]
VisibilityMode: 'inherit'

Visualize the satellite movement and its trace on the ground. The satellite covers the area around
Japan during one half of the day and Australia during the other half.

play(sc);

2-171

2 Functions

2-172

& Satellte Scenana ViEaer = o

-

S0
bkary 10 220 e i, Maxw, Geol'pe, [srthutsr Geographios, G S0kt O, LISOA, L0, AemCEnD, 1, snd S 035 User Commanty

SO 0400 UTC My 13 3030 &6 0d008 UTC el 14 20 08 80 00 LUTC
uTc 7 UTE y i3 -
\ Al e J.nd | |

Input Arguments

sat — Satellite
row vector of Satellite objects

Satellite, specified as a row vector of Satellite objects.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'LeadTime"', 3600 sets the lead time of the ground track to 3600 seconds upon creation.
Viewer — Satellite scenario viewer

row vector of all satelliteScenarioViewer objects (default) | scalar
satelliteScenarioViewer object | array of satelliteScenarioViewer objects

Satellite scenario viewer, specified as a scalar, row vector, or array of satelliteScenarioViewer
objects.

LeadTime — Period of future ground track to be visualized
StartTime to StopTime (default) | real positive scalar

Period of future ground track to be visualized in Viewer, specified as a comma-separated pair
consisting of 'LeadTime' and a real positive scalar in seconds.

groundTrack

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | real positive scalar

Period of ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar

Visual width of ground track in pixels, specified as a comma-separated pair consisting of
"LineWidth' and a scalar in the range (0,10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadTime — Period of ground track to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track to be visualized in the satellite scenario viewer, specified as a comma-
separated pair consisting of 'LeadTime"' and a real positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar in the range (0 10]

Visual width of the ground track in pixels, specified as a comma-separated pair consisting of
"LineWidth' and a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadLineColor — Color of future ground track line
[1 0 1] (default) | RGB triplet | RGB triplet |string scalar of color name | character
vector of color name

Color of the future ground track line, specified as a comma-separated pair consisting of
'LeadLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

2-173

2 Functions

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '#FFO0O00 ' —

‘green' ‘g’ [0 1 0] '#OOFFOO'

'blue’ ‘b [0 0 1] '#0000FF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ m' [1 0 1] '"#FFOOFF' I

'yellow' 'y! [11 0] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000' E—

'white' 'w' [111] "#FFFFFF']

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many

types of plots.

RGB Triplet Hexadecimal Color Code Appearance

[0 0.4470 0.7410] '#0072BD' I

[0.8500 0.3250 0.0980] '#D95319' I

[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I

[0.4660 0.6740 0.1880] "#77AC30' I

[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Example: 'blue’

Example: [0 0 1]

Example: '#0000FF"

TrailLineColor — Color of ground track line history

[1 0.5 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the ground track line history, specified as a comma-separated pair consisting of
'TrailLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800"', '#ff8800', '#F80"', and '#f80"' are equivalent.

2-174

groundTrack

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '#FFO000O ' —

‘green’ ‘g’ [0 1 0] '#0OFFOO'

"blue'’ ‘b [0 0 1] '#0000FF' —

‘cyan' ‘c' [0 1 1] '#OOFFFF'

'magenta’ 'm' [1 0 1] '#FFOOFF' I

'yellow' 'y! [11 0] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000" —

'white' 'w! [111] '"#FFFFFF' I—

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many

types of plots

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] "#77AC30' I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#M2142F' I

Example: 'blue’

Example: [0

0 1]

Example: '#0000FF'

See Also

Objects

satelliteScenario | satelliteScenarioViewer

Functions

show | play | groundStation | access | hide | satellite

Topics

“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

2-175

2 Functions

Introduced in R2021a

2-176

gnssCACode

gnssCACode

Generate C/A-code for GPS, NavIC, and QZSS satellites

Syntax

code = gnssCACode(prnid,gnsstype)

Description
code = gnssCACode(prnid,gnsstype) generates coarse acquisition codes (C/A-codes) for the

specified pseudo-random noise (PRN) index, prnid, of the satellite constellation specified by
gnsstype.

Examples

Generate C/A-code for Multiple GPS Satellites

Specify the unique pseudo-random noise (PRN) index for for three GPS satellites.

prnid = [43 87 10];
gnsstype = "GPS";

3 satellites
Global navigation satellite constellation type

%
%

Generate the C/A-code for these three GPS satellites.

code = gnssCACode(prnid,gnsstype);

size(code)
ans = 1Ix2
1023 3

Generate C/A-code for NavIC Satellites over Multiple Epochs

Specify the unique PRN index for two NavIC S-band satellites.

prnid = [2 13];
gnsstype = "NavIC S-SPS"; % S-band

Generate the C/A-code for these two NavIC S-band satellites.
code = gnssCACode(prnid,gnsstype);
Calculate the output for 10 C/A-code epochs.

numCAEpochs = 10;
fullCode = repmat(code,numCAEpochs,1);
size(fullCode)

2-177

2 Functions

2-178

ans = 1x2

10230 2

Input Arguments

prnid — Satellite PRN index
integer | vector of integers

Satellite PRN index for which the function generates a C/A-code, specified as a scalar indicating a
PRN index for a single satellite or a vector indicating PRN indices for multiple satellites. Valid values
of PRN indices depend on the gnsstype input.

gnsstype Value PRN Index Valid Value
"GPS" integer in the range [1, 210]
"Qzss™ integer in the range [183, 202]
“NavIC L5-SPS" or "NavIC S-SPS" integer in the range [1, 14]

Data Types: double | uint8

gnsstype — Type of global navigation satellite constellation
"GPS" | "QZSS" | "NavIC L5-SPS" | "NavIC S-SPS"

Type of global navigation satellite constellation, specified as one of these values.

+ "GPS"
. "Qzss"

+ "NavIC L5-SPS"
+ "NavIC S-SPS"

Data Types: char | string

Output Arguments

code — Generated C/A-code
column vector | matrix

Generated C/A-code, returned as one of these options.

* Column vector of length 1023 — When you specify prnid as a scalar.

* Matrix — When you specify prnid as a vector. The number of rows of this matrix is equal to 1023,
and the number of columns correspond to the length of the prnid vector. Each column of this
matrix represents the generated C/A-code corresponding to the element in the prnid vector.

For detailed information on the relationship between PRN index values and the generated C/A-codes,
refer to IS-GPS-200L Table 3-Ia, 3-Ib, and 6-I [1], ISRO-IRNSS-ICD-SPS-1.1 Table 7 [2], and IS-QZSS-
PNT-004 Table 3.2.2-2 [3].

gnssCACode

References

[1] IS-GPS-200L. "NAVSTAR GPS Space Segment/Navigation User Segment Interfaces". GPS
Enterprise Space & Missile Systems Center (SMC) - LAAFB, May 14, 2020.

[2] ISRO-IRNSS-ICD-SPS-1.1. "Signal in space ICD for standard positioning service". ISRO satellite
navigation programme. August 2017.

[3] IS-QZSS-PNT-004. "Quasi-Zenith Satellite System. Interface Specification. Satellite Positioning,
Navigation and Timing Service". Cabinet office, Government of Japan. January 25, 2021.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Objects
gpsPCode | comm.GoldSequence | comm.PNSequence

Topics
“GPS Waveform Generation”

Introduced in R2021b

2-179

2 Functions

dvbrcs2TurboEncode

Encode DVB-RCS2-compliant turbo codes

Syntax

code = dvbrcs2TurboEncode(msg, r,permparams)

Description

code = dvbrcs2TurboEncode(msg, r,permparams) encodes the message msg by using a Digital
Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2) standard-
compliant duo-binary turbo encoder, as defined in ETSI EN 301 545-2 V1.2.1 Section 7.3.5.1 [1]. ris
the code rate, and permparams specifies the permutation control parameters that the function uses
to interleave the input message. Output code contains the DVB-RCS2-encoded message.

Examples

Encode Message Using DVB-RCS2 Turbo Encoder

Encode a message using a Digital Video Broadcasting Second Generation Return Channel over
Satellite (DVB-RCS2) duo-binary turbo encoder, with constant code rate and frame length.

Specify the frame length, code rate, and permutation control parameters.
frameLen = 40*8; % Payload length in bits

r. = n 3/4 n ;

permParams = [17 9 5 14 1];

Generate a column vector of random binary data.

msg = randi([0@ 11,framelLen,l);

Encode the message by using DVB-RCS2 turbo encoder.

code = dvbrcs2TurboEncode(msg, r,permParams) ;

Encode Message Using DVB-RCS2 Turbo Encoder with Variable Code Rates and Frame
Lengths

Encode a message using a Digital Video Broadcasting Second Generation Return Channel over
Satellite (DVB-RCS2) duo-binary turbo encoder, with variable code rates and frame lengths.

Specify the frame lengths, code rates, and permutation control parameters.
frameLen = [10*8 100*8 49*8]; % Payload length in bits
r={'1/3","1/2",'2/3"};

permParams = [31 1 3 4 2];

2-180

dvbrcs2TurboEncode

Generate the column vectors of binary data and encode the message using DVB-RCS2 turbo encoder.

% Initialize output as a 3-by-1 cell array
code = cell(length(r),1);
for frmIdx = 1l:1length(framelLen)
msg = randi([0@ 1], frameLen(frmIdx),1);
code{frmIdx} = dvbrcs2TurboEncode(msg, r{frmIdx},permParams);
end

Input Arguments

msg — Input message
binary-valued column vector

Input message, specified as a binary-valued column vector. The length of this column vector must be
in the range [1, 65,535] bytes.

Data Types: double | int8 | logical

r — Code rate
II1/3II | II1/2II | II2/3II | II3/4II | II4/5II | II5/6II | II6/7II | II7/8II

Code rate, specified as one of these values.

. "1/3"
. 172"
. "2/3"
. "3/4"
. "4/5"
. "5/6"
. "6/7"
.« "7/8"

Data Types: char | string

permparams — Permutation control parameters
vector

Permutation control parameters that the function uses to interleave the input message, specified as a
vector of these five elements in order: P, Q,, Q;, Q,, and Qs. P must be in the range [9, 255], and Q,,
Q,, Q,, and Q3 must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be coprime to half of the length of the
input msg.

Data Types: double | uint8

Output Arguments

code — DVB-RCS2-encoded message
binary-valued column vector

2-181

2 Functions

DVB-RCS2-encoded message, returned as a binary-valued column vector. The data type of the code is
same as that of the input msg.

Data Types: double | int8 | Logical
References

[1]1 EN 301 545-2 - V1.2.1. Digital Video Broadcasting (DVB); Second Generation DVB Interactive
Satellite System (DVB-RCS2); Part 2: Lower Layers for Satellite standard (etsi.org).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
dvbrcs2TurboDecode

Objects
dvbrcs2WaveformGenerator | comm.TurboEncoder

Introduced in R2021b

2-182

dvbrcs2TurboDecode

dvbrcs2TurboDecode

Decode DVB-RCS2-compliant turbo codes

Syntax

decoded = dvbrcs2TurboDecode(code, r,permparams)

decoded = dvbrcs2TurboDecode(code, r,permparams,numiter)
Description

decoded = dvbrcs2TurboDecode(code, r,permparams) decodes the soft bits in code by using
a Digital Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2) standard-
compliant duo-binary turbo decoder, as defined in ETSI EN 301 545-2 V1.2.1 Section 7.3.5.1 [1]. ris
the code rate, and permparams are the permutation control parameters that the function uses to
interleave the input soft bits data.

decoded = dvbrcs2TurboDecode(code, r,permparams,numiter) specifies the number of
decoding iterations.

Examples

Transmit and Decode DVB-RCS2 Encoded Data

Transmit a Digital Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2)
encoded signal through an additive white Gaussian noise (AWGN) channel, and then decode it using a
DVB-RCS2 duo-binary turbo decoder.

Specify the frame length, code rate, and permutation control parameters.
frameLen = 100%*8; % Payload length in bits

r. = II2/3II;
permParams = [37 0 2 0 2];

Generate a column vector of random binary data, and then encode the message by using a DVB-RCS2
turbo encoder.

msg = randi([0@ 1], frameLen,l);
code = dvbrcs2TurboEncode(msg, r,permParams) ;

Modulate the encoded message, and then pass it through an AWGN channel.

modCode = gammod(code, 16, ‘gray’,
'"InputType', 'bit"',

'UnitAveragePower',true); % 16QAM Modulation
snrdB = 10; % SNR
receivedCode = awgn(modCode,snrdB);
Demodulated the received signal.
noiseVar = 10.7(-snrdB/10); % Noise variance
demodLLR = gamdemod(receivedCode, 16, 'gray"',

2-183

2 Functions

'"OutputType', 'lL1lr",
"UnitAveragePower',true,
'NoiseVariance',noiseVar); % 16QAM Demodulation

Decode the demodulated soft bits by using a DVB-RCS2 turbo decoder.

decoded = dvbrcs2TurboDecode(-1*demodLLR, r,
permParams) ;

Display the erroneous bits.

fprintf('Number of bit errors = %f\n',sum(msg~=decoded))

Number of bit errors = 0.000000

Calculate BER for DVB-RCS2 Encode-Decode Chain

Calculate bit error rate (BER) for a Digital Video Broadcasting Second Generation Return Channel
over Satellite (DVB-RCS2) encode-decode chain.

Specify the frame length, code rate, and permutation control parameters.

frameLen = 25%*8; % Payload length in bits
r = II3/4II;
permParams = [19 13 2 9 15];

Define the simulation parameters.

snrdB = 6;
nVar = 10.~(-snrdB/10);
errorRate = comm.ErrorRate;

SNR
Noise variance
Calculates BER

o® o° o°

Run the encode-decode chain simulation for 10 frames and calculate the BER.

for frmIdx = 1:10
msg = randi([0® 1],framelLen,l);
code = dvbrcs2TurboEncode(msg, r,permParams) ;
modCode = gammod(code,4,[0 2 3 1],
"InputType', 'bit"',
'UnitAveragePower',true); % QPSK Modulation
receivedOut = awgn(modCode, snrdB);
demodOut = gamdemod(receivedOut,4,[0 2 3 1],
"OutputType', 'llr"',
"UnitAveragePower',true,
"NoiseVariance',nVar); % QPSK Demodulation
decoded = dvbrcs2TurboDecode(-1*demodOut, r,
permParams) ;
errorStats = errorRate(int8(msg),decoded);
end

Display the bit error rate.
fprintf('Error rate = %f\n',errorStats(1l));
Error rate = 0.003500

fprintf('Number of errors detected = %f\n',errorStats(2));

2-184

dvbrcs2TurboDecode

Number of errors detected = 7.000000
fprintf('Total bits compared = %f\n',errorStats(3));

Total bits compared = 2000.000000

Input Arguments

code — Encoded soft bits
column vector

Encoded soft bits, specified as a column vector.

Data Types: double

r — Code rate
II1/3II | II1/2II | II2/3II | II3/4II | II4/5II | II5/6II | II6/7II | II7/8II

Code rate, specified as one of these values.

Data Types: char | string

permparams — Permutation control parameters

"1/3"
"1/2"
"2/3"
"3/4"
"4/5"
"5/6"
"6/7"
"7/8"

vector

Permutation control parameters that the function uses to interleave the input soft bits data, specified
as a vector of these five elements in order: P, Q,, Q;, Q,, and Q. P must be in the range [9, 255], and

Q,, Q1, Q,, and Q5 must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be co-prime to floor((inputmsglen x

r)/2). inputmsglen is the length of the input message, before encoding.

Data Types: double | uint8

numiter — Number of decoding iterations
8 (default) | positive integer

Number of decoding iterations, specified as a positive integer.

Data Types: double | uint8

2-185

2 Functions

Output Arguments

decoded — Decoded message
binary-valued column vector

Decoded message, returned as a binary-valued column vector.

Data Types: int8

References

[1]1 EN 301 545-2 - V1.2.1. Digital Video Broadcasting (DVB); Second Generation DVB Interactive
Satellite System (DVB-RCS2); Part 2: Lower Layers for Satellite standard (etsi.org).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
dvbrcs2TurboEncode | dvbrcs2BitRecover

Objects
dvbrcs2RecoveryConfig | comm.TurboDecoder

Introduced in R2021b

2-186

pattern

pattern

Package: satcom.satellitescenario

Plot 3-D radiation pattern of antenna

Syntax

pat = pattern(tx)

pat = pattern(rx,freq)
pat = pattern(___ ,Name,Value)
Description

pat = pattern(tx) plots the 3-D radiation pattern of the antenna for the transmitter tx. The
signal gain value (in dBi) in a particular direction determines the color of the pattern. The function
scales the pattern on the plot according to the Size name-value argument. The function plots the
pattern for the transmitter frequency as specified as specified by the Frequency property of tx.

pat = pattern(rx, freq) plots the 3-D radiation pattern of the antenna for the receiver rx with
frequency freq.

pat = pattern(,Name, Value) specifies options using one or more name-value arguments in
addition to any of the input argument combinations in previous syntaxes. For example,
"ColorMap', 'jet' specifies the jet colormap for coloring the pattern plot.

Examples

Visualize Radiation Pattern of Transmitter Antenna on Satellite

Set up the satellite scenario.
startTime = datetime(2021,2,12,13,30,0);
stopTime = startTime + hours(5);

sampleTime = 60; %seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Create a satellite, ground station, transmitter, and receiver.

sat = satellite(sc,1e7,0,0,0,0,0);

gs = groundStation(sc,"Latitude",30,"Longitude",74);
tx = transmitter(sat, "Frequency",b30e9);
rx = receiver(gs);

Visualize the scenario in the satellite scenario viewer.

viewer = satelliteScenarioViewer(sc);

2-187

2 Functions

& Satellae Scenans Viewer _ o

#
0 .I'.H_."‘d.hlhn X, Lz‘nh.l.ﬁc.:'.m:ﬂm W, i S R L (Coamimsanity
Fobs 13 2021 1506060 UTC

wt

Plot the radiation pattern of the transmitter antenna.

pat = pattern(tx);

2-188

pattern

Feb 13 2 16:08-08 UTC
|

Point the satellite at the ground station. The pattern rotates to reflect the new orientation of the
antenna.

pointAt(sat,gs);

2-189

2 Functions

| 4 Sstelide Scenana Viewss - o

DRI, PO, ! e O

Increase the visual size of the radiation pattern.

pat.Size = 2000000;
pat.Colormap = "parula";

2-190

pattern

. Satellne SCenansd Viewer

CURIL, W, s s G5 L Commnity
Feb 17 21 160800 UTC Febs 1 1 150008 UTC
|

Visualize Radiation Pattern of Receiver Antenna on Satellite
Set up the satellite scenario.

sc = satelliteScenario;

Create a satellite, ground station, transmitter, and receiver.

sat = satellite(sc,1e7,0,0,0,0,0);

gs = groundStation(sc,"Latitude",30,"Longitude",74);
tx = transmitter(sat, "Frequency",b30e9);
rx = receiver(gs);

Visualize the scenario in the satellite scenario viewer.

viewer = satelliteScenarioViewer(sc);

2-191

2 Functions

i Satellte Scenarmd Viewer = [} =

ol 15 M [roap— Ceolye, [arthetsr Geographecy, CNE kb [, LISOA, UFS0S, AsmCRID 1084, snd $u (61 e Commondy

14455 LTS -
AflIEe |k

Jual 15 R0k 15008 88 UTC Jul 15 73T 16060 &5 UTC Juﬂi"ﬂ:'l}l
Plot the radiation pattern of the receiver antenna.

freq = 30e9;
pat = pattern(rx,freq);

2-192

pattern

4 Satellte Scenans Vieser _ o w

1:‘:;";’3_&: “Soure: [ari, Maxw, Geol'pe, [arthter Geographics, G Skt 05, LISOA, LS00, AemCEnD, 184, snd S 035 User Gommanity

4 1 » W Jual 15 R0 1508 88 UTC Jul 15 FEFT 1600 &0 UTC Jul 15 3031 17
' |

Increase the visual size and specify the transparency of the radiation pattern.

pat.Size = 1500000;
pat.Transparency = 0.45;

2-193

2 Functions

2-194

& Satellze Scenans Viewer _ o w

Sl

ol 15 M Souroe: [, Maxw, Geol'pe, [arthtsr Geographios, G Skt O, LISOA, LS00, AemCEnD, 1M, snd S 035 User Gommanity

ARG LT

A0l e b Juall 15 FECHT 15000 8 UTE Juall 15 O VEBE S LITC dual 15 31 17
! |

Input Arguments

tx — Transmitter
Transmitter object

Transmitter, specified as a Transmitter object.

rx — Receiver
Receiver object

Receiver, specified as a Receiver object.

freq — Frequency to calculate radiation pattern
positive scalar
Frequency to calculate radiation pattern, specified as a positive scalar.

Data Types: double
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'Size',1000 sets the size of the radiation pattern plot to 1,000 meters.

pattern

Size — Size of radiation pattern plot
1000000 (default) | numeric scalar

Size of the radiation pattern plot, specified as a numeric scalar in meters. This value represents the
distance between the antenna position and the point on the plot with the highest gain.

Data Types: double

Colormap — Colormap for coloring pattern plot
'jet' (default) | predefined colormap name | M-by-3 matrix

Colormap for coloring the pattern plot, specified as a predefined colormap name or an M-by-3 matrix
of red, green, blue (RGB) triplets that define M individual colors. For more information on the
colormap names, see “map”.

Data Types: double | char | string

Transparency — Transparency of the pattern plot
0.4 (default) | scalar in the range [0, 1]

Transparency of the pattern plot, specified as a scalar in the range [0, 1]. A value of © means the plot
is completely transparent, and a value of 1 means the plot is opaque.

Data Types: double

Resolution — Resolution of 3-D pattern
"high' (default) | 'medium' | ' Low'

Resolution of the 3-D pattern, specified as ' low', 'medium’, or 'high'. Use this argument to

control the visual quality of the pattern and time the function takes to plot the pattern. ' Low'
corresponds to the fastest and least-detailed pattern.

Data Types: char | string

Viewer — Satellite Scenario Viewer to visualize satellite
row vector (default) | scalar | matrix

Satellite Scenario Viewer to visualize the satellite, specified as a scalar, row vector, or matrix of
satelliteScenarioViewer objects that are associated with the satellite scenario.

Output Arguments

pat — Radiation pattern visualization for transmitter or receiver
Pattern object

Radiation pattern visualization for transmitter or receiver returned as a Pattern object.

See Also

Objects
Receiver | Transmitter | satelliteScenarioViewer | satelliteScenario

Functions
show | hide | receiver | transmitter

2-195

2 Functions

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021b

2-196

dvbrcs2BitRecover

dvbrcs2BitRecover

Recover bits for DVB-RCS2 waveform

Syntax

[bits,framePDUErr] = dvbrcs2BitRecover(rxdata,cfgrx,nvar)

Description

[bits,framePDUErr] = dvbrcs2BitRecover(rxdata,cfgrx,nvar) recovers frame protocol
data unit (PDU), bits, and the frame PDU cyclic redundancy check (CRC) status, framePDUErTr.
Input rxdata is the received complex in-phase quadrature (IQ) symbols in the form of bursts of a
Digital Video Broadcasting Second Generation Return Channel over Satellite (DVB-RCS2)
transmission. cfgrx is the recovery configuration object, dvbrcs2RecoveryConfig. nvar is the
noise variance estimate that the function uses to calculate soft bits.

The function supports demodulation and decoding of the turbo codes with linear modulation (TC-LM),
and spread spectrum and turbo codes with linear modulation (SS-TC-LM) transmission formats, with
all three PDU types (logon, control, and traffic), for reference and custom waveforms.

Examples

Recover PDU from DVB-RCS2 Reference Waveform
Recover the frame PDU for a DVB-RCS2 reference waveform.

Set the properties of a DVB-RCS2 waveform generator System object™.
wg = dvbrcs2WaveformGenerator;

wg.TransmissionFormat = "SS-TC-LM";

wg.WaveformID = 7;

wg.SamplesPerSymbol = 2;

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols.

txWaveform = wg(framePDU) ;

Add additive white Gaussian noise (AWGN) to the generated waveform.
sps = wg.SamplesPerSymbol;

EsNodB = 1;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, "measured");

Create and then configure the DVB-RCS2 recovery configuration object.

2-197

2 Functions

cfg = dvbrcs2RecoveryConfig;
cfg.TransmissionFormat = wg.TransmissionFormat;
cfg.WaveformID = wg.WaveformID;

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',0.2,
"InputSamplesPerSymbol', sps,
'DecimationFactor',sps);
span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay.

filtOut = rxFilter([rxIn;
complex(zeros(span/2*sps,1))1);
rxSymb = filtOut(span+l:end);

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers
of bit errors.

[rxOut,pduErr] = dvbrcs2BitRecover(rxSymb,cfg,10”(-EsNodB/10));
fprintf("Erroneous frame PDU = %d\n", pduErr)

Erroneous frame PDU = 0
fprintf("Number of bit errors = %d\n", sum(framePDU~=rx0ut))

Number of bit errors = 0

Recover PDU from DVB-RCS2 Custom Waveform
Recover the frame PDU for a DVB-RCS2 custom waveform.

Set the properties of the DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.IsCustomWaveform = true;
wg.PayloadLengthInBytes = 115;
wg.MappingScheme = "8PSK";

wg.CodeRate = "2/3";
wg.PermutationParameters = [29 6 5 0 0];
wg.UniqueWord = "3ACFO8B13076";

Get the characteristic information about the DVB-RCS2 waveform generator.
info(wg)

ans = struct with fields:
BurstLength: 476
PayloadLengthInBytes: 115
MappingScheme: "8PSK"
CodeRate: "2/3"
PreamblelLength: 8
PostambleLength: 8
PilotPeriod: 0

2-198

dvbrcs2BitRecover

PilotBlockLength: 1
PermutationParameters: [29 6 5 0 0]
UniqueWord: "3ACF08B13076"
PilotSum: O

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols.

txWaveform = wg(framePDU);

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = wg.SamplesPerSymbol;

EsNodB = 9;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, 'measured');

Configure the DVB-RCS2 recovery configuration object.

cfg = dvbrcs2RecoveryConfig;

cfg.IsCustomWaveform = true;

cfg.MappingScheme = wg.MappingScheme;

cfg.CodeRate = wg.CodeRate;

cfg.PermutationParameters = wg.PermutationParameters;

Get burst parameters from waveform generator info method.

burstParams = info(wg);
cfg.BurstLength = burstParams.BurstLength;

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',0.2,
'InputSamplesPerSymbol',sps, ...
'‘DecimationFactor',sps);

span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay.
filtOut = rxFilter([rxIn;

complex(zeros(span/2*sps,1))1);
rxSymb = filtOut(span+l:end);

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers

of bit errors.

[rx0Out,pduErr] = dvbrcs2BitRecover(rxSymb,cfg,10”(-EsNodB/10));

fprintf('Erroneous frame PDU = %d\n', pduErr)
Erroneous frame PDU = 0
fprintf('Number of bit errors = %d\n', sum(framePDU~=rx0ut))

Number of bit errors = 0

2-199

2 Functions

Recover PDU from Burst Configuration Parameters
Recover the frame PDU for a DVB-RCS2 waveform with specified burst configuration parameters.

Set the burst configuration paramters.

Rsym = 1e6;

tSlot = 2.11e-3;
preBurstGuardOffset = 20e-6;
waveld = 39;

Symbol rate (1 Msps)

Burst time slot duration (2.11 ms)
20 microsecond

Waveform ID

o o o° o°

Set the properties of the DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.WaveformID = waveld; % QPSK 6/7

Compute the burst parameters in terms of symbols.

wg.PreBurstGuardLength = ceil(preBurstGuardOffset*Rsym);

params = info(wg);

burstPayLoadDuration = params.BurstLength/Rsym;

burstPostGuard = ceil((tSlot-preBurstGuardOffset-burstPayLoadDuration)*Rsym);
wg.PostBurstGuardLength = burstPostGuard;

Generate the frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst symbols

txWaveform = wg(framePDU) ;

Add additive white Gaussian noise (AWGN) to the generated waveform.
sps = wg.SamplesPerSymbol;

EsNodB = 7;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, 'measured');

Configure the DVB-RCS2 recovery configuration object.

cfg = dvbrcs2RecoveryConfig;
cfg.WaveformID = wg.WaveformID;

Initialize a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(

'RolloffFactor', 0.20,

'"InputSamplesPerSymbol', sps, 'DecimationFactor', sps);
span = rxFilter.FilterSpanInSymbols;

Apply matched filtering and remove the filter delay

rxBurst rxIn(wg.PreBurstGuardLength*sps+1l:end-wg.PostBurstGuardLength*sps);
filtOut rxFilter([rxBurst;

complex(zeros(span/2*sps,1))]1);
rxSymb = filtOut(span+l:end);

2-200

dvbrcs2BitRecover

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers
of bit errors.

[rxOQut, pduErr] = dvbrcs2BitRecover(rxSymb, cfg, 10~(-EsNodB/10));
fprintf('Erroneous frame PDU = %d\n', pduErr)

Erroneous frame PDU = 0
fprintf('Number of bit errors = %d\n', sum(rxQut~=framePDU))

Number of bit errors = 0

Input Arguments

rxdata — Received complex IQ symbols
column vector

Received complex IQ symbols, specified as a column vector. rxdata must contain only one burst.
The type of waveform determines the length of rxdata.

* Reference waveform — For set values of the TransmissionFormat and WaveformID properties of
the dvbrcs2WaveformGenerator System object, the length of input rxdata must be equal to
the burst length parameter specified in ETSI EN 301 545-2 V1.2.1 (2014-11) Table A-1 and A-2 [1].

* Custom waveform — The length must be equal to the value of BurstLength property of the
dvbrcs2RecoveryConfig object.

Data Types: double
Complex Number Support: Yes

cfgrx — DVB-RCS2 recovery configuration object
dvbrcs2RecoveryConfig object

DVB-RCS2 recovery configuration object, specified as a dvbrcs2RecoveryConfig object. The
properties of this object specify the transmission parameters of the received waveform and the
decoding parameters for the recovery of the data.

nvar — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar. The function uses nvar as a scaling factor
to calculate the soft bits from the IQ symbols.

When you specify nvar as 0, the function uses a value of 1e-5, which corresponds to a signal-to-noise
ratio (SNR) of 50 dB.

Data Types: double
Output Arguments

bits — Recovered frame PDU data bits
column vector

Recovered frame PDU data bits, returned as a column vector.

2-201

2 Functions

Data Types: int8

framePDUErr — Frame PDU CRC status
trueorl| falseor®

Frame PDU CRC status, returned as a numeric or logical 1 (true) or 0 (false). A value of false
indicates the frame is erroneous.

Data Types: logical
References
[1] ETSI Standard EN 301 545-2 V1.2.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Interactive Satellite Systems (DVB-RCS2); Part 2: Lower Layers for Satellite
Standard.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dvbrcs2RecoveryConfig | dvbrcs2WaveformGenerator

Introduced in R2021b

2-202

Objects

3 Objects

3-2

ccsdsTCConfig

CCSDS TC configuration parameters

Description
The ccsdsTCConfig object creates a configuration object for Consultative Committee for Space

Data Systems (CCSDS) Telecommand (TC) using default and specified values. ccsdsTCConfig object
is configurable by using applicable “Properties” on page 3-2.

Creation

Syntax

cfg
cfg

ccsdsTCConfig
ccsdsTCConfig(Name, Value)

Description
cfg = ccsdsTCConfig creates a CCSDS TC configuration object using default properties.

cfg = ccsdsTCConfig(Name,Value) sets “Properties” on page 3-2 using one or more name-
value pairs. Enclose each property name in quotes. For example,

ccsdsTCConfig('DataFormat', 'CLTU', 'Modulation', 'BPSK') configures the CSSDS TC
configuration object with a communications link transmission unit data format and binary phase shift
keying (BPSK) modulation scheme.

Properties

DataFormat — Data formats used by PLOPs
"CLTU" (default) | "acquisition sequence" | "idle sequence"

Data formats used by physical layer operation procedures (PLOPs), specified as one of these options.

e "CLTU" — Communications link transmission unit (CLTU)
* "acquisition sequence"
+ "idle sequence"

Data Types: char | string

ChannelCoding — Forward error correction coding
"BCH" (default) | "LDPC"

Forward error correction coding, specified as one of these options.

* "BCH" — Bose Chaudhuri Hocquenghem (BCH)
* "LDPC" — Low-density parity-check (LDPC)

ccsdsTCConfig

Dependencies

To enable this property, set the DataFormat property to "CLTU".
Data Types: char | string

LDPCCodewordLength — LDPC codeword length
128 (default) | 512

LDPC codeword length, specified as 128 or 512.

Dependencies

To enable this property, set the ChannelCoding property to "LDPC".
Data Types: double

HasRandomizer — Flag to indicate randomization
1 or true (default) | @ or false

Flag to indicate randomization on the bits in CLTU and on the fill data added prior to randomization,
specified as a logical value of 1 (true) or 0 (false). To indicate the presence of a randomizer in the
waveform, set this value to 1 (true).

Dependencies

To enable this property, set the ChannelCoding property to "BCH".
Data Types: logical

HasTailSequence — Flag to indicate tail sequence in CLTU
1 or true (default) | © or false

Flag to indicate the tail sequence in CLTU, specified as a logical value of 1 (true) or 0 (false). To
indicate the presence of the tail sequence to delimit the end of a CLTU, set this value to 1 (true).

Dependencies

To enable this property, set the ChannelCoding property to "LDPC" and the LDPCCodewordLength
property to 128.

Data Types: Logical

Modulation — Modulation scheme
"PCM/PSK/PM" (default) | "PCM/PM/biphase-L" | "BPSK"

Modulation scheme used to generate the CCSDS TC waveform, in the form of baseband in-phase
quadrature (IQ) samples, specified as one of these options.

* "PCM/PSK/PM" — The line coded signal as per the pulse code modulation (PCM) format is phase
shift keying (PSK) modulated on a sine wave subcarrier and then phase modulated (PM) on a
residual carrier.

 "PCM/PM/biphase-L" — The biphase-L (Manchester) encoded data is phase modulated on a
residual carrier.

* "BPSK" — Suppressed carrier modulation by using non-return-to-zero (NRZ) data on the carrier.

For more details on these modulation schemes, see [3].

3-3

3 Objects

3-4

Data Types: char | string

PCMFormat — PCM format
"NRZ-L" (default) | "NRZ-M"

Pulse code modulation (PCM) format, specified as one of these options. This property specifies the
PCM coding in the CCSDS TC waveform.

* "NRZ-L" — NRZ-level
¢ "NRZ-M" — NRZ-mark

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: char | string

ModulationIndex — Modulation index in residual carrier phase modulation
0.4 (default) | scalar in the range [0.2, 2]

Modulation index in the residual carrier phase modulation, specified as a scalar in the range [0.2, 2].
Units are in radians.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".
Data Types: double

SubcarrierFrequency — Sine wave subcarrier frequency
16000 (default) | 8000

Sine wave subcarrier frequency in Hertz, specified as 16000 or 8000. The subcarrier waveform is
used to PSK-modulate the NRZ data on the residual RF carrier.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: double

SymbolRate — Symbol rate
4000 (default) | 2000 | 1000 | 5600 | 250 | 125 |62.5|31.25|15.625|7.8125

Symbol rate in coded symbols per second, specified as one of these options.

* 4000
+ 2000
+ 1000
+ 500

+ 250

+ 125

* 62.5
+ 31.25

ccsdsTCConfig

+ 15.625
+ 7.8125

Note If you set SymbolRate to 4000 coded symbols per second, you must set the
SubcarrierFrequency property to 16000.

Dependencies
To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: double

SamplesPerSymbhol — Number of samples per symbol
10 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".
Data Types: double

SubcarrierWaveform — Waveform used to PSK-modulate NRZ data
"sine"

This property is read-only.

Waveform used to PSK-modulate the NRZ data, returned as "sine". CCSDS TC supports only sine-
wave subcarriers.

Dependencies

To enable this property, set the Modulation property to "PCM/PSK/PM".
Data Types: char | string

Object Functions

Specific to This Object

ccsdsTCWaveform Generate CCSDS TC waveform

Examples

Create CCSDS TC Object

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) configuration
object. Specify the properties of the object.

cfg = ccsdsTCConfig;
cfg.ChannelCoding = "LDPC";
cfg.HasTailSequence = false;
cfg.PCMFormat = "NRZ-M";

3 Objects

Display the properties of the CCSDS TC object.

disp(cfg)

ccsdsTCConfig with properties:

DataFormat: "CLTU"
ChannelCoding: "LDPC"
LDPCCodewordLength: 128
HasTailSequence: 0
Modulation: "PCM/PSK/PM"
PCMFormat: "NRZ-M"
ModulationIndex: 0.4000
SubcarrierFrequency: 16000
SymbolRate: 4000
SamplesPerSymbol: 10
Read-only properties:
SubcarrierWaveform: "sine"

Create CCSDS TC Waveform for Multiple CLTUs

Create a Consultative Committee for Space Data Systems (CCSDS) Telecommand (TC) time-domain
waveform for multiple communications link transmission units (CLTUs).

Create a default CCSDS TC configuration object.

cfg = ccsdsTCConfig;
disp(cfg)

ccsdsTCConfig with properties:

DataFormat: "CLTU"
ChannelCoding: "BCH"
HasRandomizer: 1

Modulation: "PCM/PSK/PM"

PCMFormat: "NRZ-L"

ModulationIndex: 0.4000
SubcarrierFrequency: 16000
SymbolRate: 4000

SamplesPerSymbol: 10

Read-only properties:
SubcarrierWaveform: "sine"
Specify the number of CLTUs and the transfer frame length.

numCLTUs = 10;
transferFramesLength = 8; % Number of octets in each transfer frame

Generate the CCSDS TC time-domain waveform for the transfer frames.

c = cell(1l,numCLTUs); % Cell array to store the generated waveform for all CLTUs
for k=1:numCLTUs
bits = randi([0 1],8*transferFramesLength,1); % Bits in the TC transfer frame
waveform = ccsdsTCWaveform(bits,cfg);

3-6

ccsdsTCConfig

c{1,k} = waveform; % Waveform for each CLTU
end

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of the generated
CCSDS TC time-domain waveform from the last CLTU.

scope = dsp.SpectrumAnalyzer;
scope.SampleRate = cfg.SamplesPerSymbol*cfg.SymbolRate;
scope(waveform) % Last CLTU spectrum display

y

File Tools VWiew Playback Help N

- Q-G & X&#WXEN &

Processing

REW=33.063 Hz Sample rate=40kHz T=0

References

[1] CCSDS 231.0-B-3. Blue Book. Issue 3. "TC Synchronization and Channel Coding."
Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

[2] CCSDS 401.0-B-29. Blue Book. Issue 29. "Radio Frequency and Modulation Systems - Part 1".
Earth Stations and Spacecraft. Washington, D.C.: CCSDS, September 2019.

[3] Nguyen, T.M., W.L. Martin, and Hen-Geul Yeh. "Required Bandwidth, Unwanted Emission, and
Data Power Efficiency for Residual and Suppressed Carrier Systems - a Comparative Study."
IEEE transactions on electromagnetic compatibility 37, no. 1 (February 1995): 34-50. https://
doi.org/10.1109/15.350238.

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

3 Objects

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Properties LDPCCodewordLength and ChannelCoding must be provided as compile-time constant
inputs in code generation. Use coder.Constant (MATLAB Coder) object to convert the input
variable to a constant during code generation.

See Also

Functions
ccsdsTCWaveform | ccsdsTCIdealReceiver

Objects
ccsdsTMWaveformGenerator

Introduced in R2021a

3-8

p618SiteDiversityConfig

p618SiteDiversityConfig

Create P.618 site diversity configuration object

Description

The p618SiteDiversityConfig object sets P618 site diversity configuration parameters required
for the calculation of outage probability due to rain attenuation, as defined in the ITU-R P618
recommendation [1].

Creation

Syntax

cfgSD
cfgSD

p618SiteDiversityConfig
p618SiteDiversityConfig(Name,Value)

Description

cfgSD = p618SiteDiversityConfig creates a P.618 site diversity configuration object with
default property values.

cfgSD = p618SiteDiversityConfig(Name,Value) specifies “Properties” on page 3-9 using
one or more name-value pair arguments. Enclose each property name in quotes. For example,
p618SiteDiversityConfig(' Frequency',14.25e9, 'ElevationAngle', [52.4099 52.4852])
configures a P.618 site diversity configuration object with a 14.25 GHz signal frequency and an
elevation angle for two sites as [52.4099 52.4852].

Properties

Frequency — Signal frequency
14.25e9 (default) | scalar in the range [1e9, 55€9]

Signal frequency in Hz, specified as a scalar in the range [1€9, 55e9].

Data Types: double | single

ElevationAngle — Elevation angle of two sites
[52.4099 52.4852] (default) | two-element vector of values in the range [0, 90]

Elevation angle of the two sites in degrees, specified as a two-element vector of values in the range
[0, 901.

Data Types: double | single

Latitude — Latitude of two sites
[25.768 25.463] (default) | two-element vector of values in the range [-90, 90]

3-9

3 Objects

3-10

Latitude of the two sites in degrees, specified as a two-element vector of values in the range [-90, 90].
A positive value corresponds to a North latitude, and a negative value corresponds to a South
latitude.

Data Types: double | single

Longitude — Longitude of two sites
[-80.205 -80.486] (default) | two-element vector of values in the range [-180, 180]

Longitude of the two sites in degrees, specified as a two-element vector of values in the range [-180,
180]. A positive value corresponds to East longitude, and a negative value corresponds to West
longitude.

Data Types: double | single

PolarizationTiltAngle — Polarization tilt angle for two sites
[0 O] (default) | two-element vector of values in the range [-90, 90]

Polarization tilt angle for the two sites in degrees, specified as a two-element vector of values in the
range [-90, 90].

Data Types: double | single

SiteDistance — Separation between two sites
44,0256 (default) | positive scalar

Separation between the two sites in km, specified as a positive scalar.

Data Types: double | single

AttenuationThreshold — Attenuation threshold on two links
[9 3] (default) | two-element vector

Attenuation threshold on the two links in dB, specified as a two-element vector. The attenuation
threshold on an earth space link is the maximum allowed attenuation on the path. Any attenuation
value above this property value is considered an outage in the link.

Data Types: double | single
Object Functions

Specific to This Object

p618SiteDiversityOutage Calculate outage probability due to rain attenuation with site diversity

Examples

Create P.618 Site Diversity Configuration Object
Create a default P.618 site diversity configuration object.
cfg = p618SiteDiversityConfig;

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites
as 50 km, and attenuation threshold on the two links as [9 9] dB.

p618SiteDiversityConfig

cfg.PolarizationTiltAngle = [-90 90];
cfg.SiteDistance = 50;
cfg.AttenuationThreshold = [9 9];

Set the direction of each earth station.

cfg.Latitude = [30 60]; % North direction
cfg.Longitude = [120 150]; % East direction

Display the properties of the configuration object.
disp(cfg);
p618SiteDiversityConfig with properties:

Frequency: 1.4500e+10
ElevationAngle: [52.4099 52.4852]
Latitude: [30 60]
Longitude: [120 150]
PolarizationTiltAngle: [-90 90]
SiteDistance: 50
AttenuationThreshold: [9 9]

Read-only properties:
No properties.

Calculate Outage Probability due to Rain Attenuation with Site Diversity

This example requires MAT-files with digital maps from ITU documents. If they are not available on

the path, execute the following commands to download and untar the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')

url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';

websave('ITURDigitalMaps.tar.gz',url);
untar('ITURDigitalMaps.tar.gz');
end

Create a P.618 site diversity configuration object with a signal frequency of 25 GHz.

cfgsd = p618SiteDiversityConfig;
cfgsd.Frequency = 25e9;

Specify the polarization tilt angles for two sites as [-90 90] degrees, separation between the two sites

as 50 km, and attenuation threshold on the two links as [9 9] dB.

cfgsd.PolarizationTiltAngle = [-90 90];
cfgsd.SiteDistance = 50;
cfgsd.AttenuationThreshold = [9 9];

Calculate the outage probability due to rain attenuation with site diversity.

outage = p618SiteDiversityOutage(cfgsd)

outage 0.0338

3-11

3 Objects

References

[1] International Telecommunication Union, ITU-R Recommendation P618 (12/2017).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Objects
p618Config

Functions
p618PropagationLosses | p618SiteDiversityQutage

Introduced in R2021a

3-12

p618Config

p618Config

Create P.618 configuration object

Description

The p618Config ohject sets the P.618 configuration parameters required for the calculation of the
Earth-space propagation losses, cross-polarization discrimination, and sky noise temperature, as
defined in the ITU-R P.618 recommendation [1].

Creation

Syntax

cfgP618 = p618Config

cfgP618 = p618Config(Name,Value)

Description

cfgP618 = p618Config creates a P618 configuration object with default property values.

cfgP618 = p618Config(Name,Value) specifies “Properties” on page 3-13 using one or more
name-value pair arguments. Enclose each property name in quotes. For example,

p618Config(' GasAnnualExceedance', 10, 'AntennaEfficiency',0.65) configures a P618
configuration object with 10% average annual time percentage of excess for gaseous attenuation and
0.65 antenna efficiency.

Properties

Frequency — Signal frequency
14.25e9 (default) | scalar in the range [1e9, 55€9]

Signal frequency in Hz, specified as a scalar in the range [1€9, 55e9].

Data Types: double | single

ElevationAngle — Elevation angle
31.0769 (default) | scalar in the range [5, 90]

Elevation angle in degrees, specified as a scalar in the range [5, 90].

Data Types: double | single

Latitude — Earth station latitude
51.5000 (default) | scalar in the range [-90, 90]

Earth station latitude in degrees, specified as a scalar in the range [-90, 90]. A positive value
corresponds to a North latitude, and a negative value corresponds to a South latitude.

Data Types: double | single

3-13

3 Objects

3-14

Longitude — Earth station longitude
-0.1400 (default) | scalar in the range [-180, 180]

Earth station longitude in degrees, specified as a scalar in the range [-180, 180]. A positive value
corresponds to East longitude, and a negative value corresponds to West longitude.

Data Types: double | single

GasAnnualExceedance — Average annual time percentage of excess for gaseous
attenuation
1 (default) | scalar in the range [0.1, 99]

Average annual time percentage of excess for the gaseous attenuation, specified as a scalar in the
range [0.1, 99]. This property calculates the gaseous attenuation, which satisfies the exceedance
condition, in terms of the percentage of an average year.

Note The fraction of time during which a preselected threshold is exceeded in an average year is
referred to as the annual time percentage of excess.

Data Types: double | single

CloudAnnualExceedance — Average annual time percentage of excess for cloud
attenuation
1 (default) | scalar in the range [0.1, 99]

Average annual time percentage of excess for the cloud attenuation, specified as a scalar in the range
[0.1, 99]. This property calculates the cloud attenuation, which satisfies the exceedance condition, in
terms of the percentage of an average year.

Data Types: double | single

RainAnnualExceedance — Average annual time percentage of excess for rain attenuation
1 (default) | scalar in the range [0.001, 5]

Average annual time percentage of excess for the rain attenuation, specified as a scalar in the range
[0.001, 5]. This property calculates the rain attenuation, which satisfies the exceedance condition, in
terms of the percentage of an average year.

Data Types: double | single
ScintillationAnnualExceedance — Average annual time percentage of excess for

tropospheric scintillation
1 (default) | scalar in the range [0.01, 50]

Average annual time percentage of excess for the tropospheric scintillation, specified as a scalar in
the range [0.01, 50]. This property calculates the tropospheric scintillation, which satisfies the
exceedance condition, in terms of the percentage of an average year.

Data Types: double | single

TotalAnnualExceedance — Average annual time percentage of excess for total attenuation
1 (default) | scalar in the range [0.001, 50]

p618Config

Average annual time percentage of excess for the total attenuation, specified as a scalar in the range
[0.001, 50]. This property calculates the total attenuation, which satisfies the exceedance condition,
in terms of the percentage of an average year.

Data Types: double | single

PolarizationTiltAngle — Polarization tilt angle
0 (default) | scalar in the range [-90, 90]

Polarization tilt angle in degrees, specified as a scalar in the range [-90, 90].

Data Types: double | single

AntennaDiameter — Physical diameter of earth station antenna
1 (default) | positive scalar

Physical diameter of the earth station antenna in meters, specified as a positive scalar.

Data Types: double | single

AntennaEfficiency — Antenna efficiency of earth station antenna
0.5 (default) | positive scalar

Antenna efficiency of the earth station antenna, specified as a positive scalar.

Data Types: double | single
Object Functions

Specific to This Object
p618PropagationLosses Calculate Earth-space propagation losses, cross-polarization
discrimination, and sky noise temperature

Examples

Create P.618 Configuration Object
Create a default P.618 configuration object.
cfg = p618Config;

Specify the signal frequency as 25 GHz, elevation angle as 45 degrees, and antenna efficiency as
0.65. Set the time percentage of excess for the total attenuation per annum as 0.001.
cfg.Frequency = 25e9;

cfg.ElevationAngle = 45;

cfg.AntennaEfficiency = 0.65;

cfg.TotalAnnualExceedance = 0.001;

Set the earth station direction.

cfg.Latitude = 30; % North direction
cfg.Longitude = 120; % East direction

Display the properties of the configuration object.

3-15

3 Objects

3-16

disp(cfg)
p618Config with properties:

Frequency: 2.5000e+10

ElevationAngle: 45

Latitude: 30

Longitude: 120

GasAnnualExceedance: 1

CloudAnnualExceedance:
RainAnnualExceedance:
ScintillationAnnualExceedance:
TotalAnnualExceedance:
PolarizationTiltAngle:
AntennaDiameter:
AntennaEfficiency:

.0000e-03

OHORRKEKE

.6500

Read-only properties:
No properties.

Calculate Propagation Losses, Cross-Polarization Discrimination, and Sky Noise
Temperature

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.
if ~exist('ITURDigitalMaps.tar.gz', 'file')
url = "https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
websave('ITURDigitalMaps.tar.gz',url);

untar('ITURDigitalMaps.tar.gz');
end

Create a default P.618 configuration ohject.
cfg = p618Config;

Specify the time percentage of excess for the rain attenuation per annum as 0.01 and the time
percentage of excess for the total attenuation per annum as 0.001.

cfg.RainAnnualExceedance = 0.01;
cfg.TotalAnnualExceedance = 0.001;

Calculate the propagation losses, cross-polarization discrimination, and sky noise temperature.
[pl,xpd,tsky] = p618PropagationLosses(cfg)

pl = struct with fields:

Ag: 0.2269
Ac: 0.4552
Ar: 6.7981
As: 0.2633
At: 15.6091

xpd = 32.8876

p618Config

tsky = 267.4689

Calculate Propagation Losses in Light Rainfall

This example requires MAT-files with digital maps from ITU documents. If they are not available on
the path, execute the following commands to download and unzip the MAT-files.

if ~exist('ITURDigitalMaps.tar.gz','file')
url = 'https://www.mathworks.com/supportfiles/spc/P618/ITURDigitalMaps.tar.gz';
websave('ITURDigitalMaps.tar.gz',url);

untar('ITURDigitalMaps.tar.gz');
end

Create a P618 configuration object that occupies a signal frequency of 20 GHz.

cfg = p618Config('Frequency',20e9);

Calculate the propagation losses in a light rainfall of 1 mm/hr with an earth station height of 0.75 km.
pl = p6l8PropagationLosses(cfg, 'RainRate',1l, 'StationHeight',0.75)

pl = struct with fields:

Ag: 0.7996
Ac: 0.8793
Ar: 0.0177
As: 0.3187
At: 1.7514
References

[1] International Telecommunication Union, ITU-R Recommendation P618 (12/2017).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Objects
p618SiteDiversityConfig

Functions
p618PropagationLosses | p618SiteDiversityQutage

Introduced in R2021a

3-17

3 Objects

3-18

satelliteScenario

Create satellite scenario object

Description

The satelliteScenario object represents a 3-D arena consisting of satellites, ground stations, and
the interactions between them. Use this object to model satellite constellations, model ground station
networks, perform access analyses between the satellites and the ground stations, and visualize the
results.

Creation

Syntax

sc = satelliteScenario
sc = satelliteScenario(startTime,stopTime,sampleTime)

Description
sc = satelliteScenario creates a default satellite scenario object.

sc = satelliteScenario(startTime,stopTime,sampleTime) sets the StartTime, StopTime,
and SampleTime properties to the values of startTime, stopTime, and sampleTime respectively.

Properties

StartTime — Start time of satellite scenario simulation in UTC
current time or earliest epoch defined in TLE data (default) | datetime scalar

Start time of the satellite scenario simulation in Universal Time Coordinated (UTC), specified as a
datetime scalar. If you specify the StartTime, StopTime, or SampleTime properties, the object no
longer updates StartTime property with further additions of satellites from TLE files.

Example: datetime(2020,5,11,12,35,38);
Data Types: datetime

StopTime — Stop time of satellite scenario simulation in UTC
StartTime + longest orbital period among the satellites in the scenario (default) | datetime scalar

Stop time of the satellite scenario simulation in UTC, specified as a datetime scalar. If you specify
the StartTime, StopTime, or SampleTime properties, the object no longer updates StartTime
property with further additions of satellites from TLE files.

Example: datetime(2020,5,11,12,35,38);
Data Types: datetime

SampleTime — Sample time of satellite scenario simulation
(StopTime - StartTime)/99 (default) | real-valued scalar

satelliteScenario

Sample time of the satellite scenario simulation, specified as a real-valued scalar. If you specify the
StartTime, StopTime, or SampleTime properties, the object no longer updates, the SampleTime
property updated with further additions of satellites from TLE files.

Data Types: double

Satellites — Satellites in the scenario
row vector of Satellite objects

This property is read-only.

Satellites in the scenario, returned as a vector of Satellite objects. To create a Satellite object
and add it to the satellite scenario, see the satellite object function.

GroundStations — Ground stations in scenario
row vector of GroundStation objects

This property is read-only.

Ground stations in the scenario, returned as a row vector of GroundStation objects. To create a
GroundStation object and add it to the satellite scenario, see the groundStation object function.

Autoshow — Graphics shown automatically
1 or true (default) | 0 or false

Option to automatically show graphics, specified as a numeric or logical value of 1 (true) or 0
(false). This property determines if entities added to the scenario are automatically shown in an
open satelliteScenarioViewer.

Object Functions

groundStation Add ground station to satellite scenario

satellite Add satellites to satellite scenario
satelliteScenarioViewer Create viewer for satellite scenario

play Play satellite scenario simulation results on viewer
Examples

Create Satellite Scenario with Custom Start and Stop Times

Specify the start time in the current time zone as yesterday. The simulation lasts for half a day.

startTime = datetime("yesterday","TimeZone","local");
stopTime = startTime + days(0.5);

Specify the sample time as 60 seconds. Create a satellite scenario object, specifying the start time,
stop time, and sample time.

sampleTime = 60;
sc = satelliteScenario(startTime,stopTime,sampleTime)

sC =
satelliteScenario with properties:

StartTime: 31-Aug-2021 04:00:00

3-19

3 Objects

3-20

StopTime: 31-Aug-2021 16:00:00
SampleTime: 60
Viewers: [0x0 matlabshared.satellitescenario.Viewer]
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
AutoShow: 1

Add Satellites to Scenario Using Keplerian Elements

Create a satellite scenario with a start time of 02-June-2020 8:23:00 AM UTC, and the stop time set to
one day later. Set the simulation sample time to 60 seconds.

startTime = datetime(2020,6,02,8,23,0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime,stopTime,sampleTime);

Add two satellites to the scenario using their Keplerian elements.

semiMajorAxis = [10000000; 15000000];
eccentricity = [0.01; 0.02];

inclination = [0; 10];
rightAscensionOfAscendingNode = [0; 15];
argumentOfPeriapsis = [0; 30];
trueAnomaly = [0; 20];

sat = satellite(sc, semiMajorAxis, eccentricity, inclination,
rightAscensionOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

sat =
1x2 Satellite array with properties:

Name

ID
ConicalSensors
Gimbals
Transmitters
Receivers
Accesses
GroundTrack
Orbit
OrbitPropagator
MarkerColor
MarkerSize
ShowLabel
LabelFontSize
LabelFontColor

View the satellites in orbit and the ground tracks over one hour.

show(sat)
groundTrack(sat, 'LeadTime',3600)

ans=1x2 object
1x2 GroundTrack array with properties:

satelliteScenario

LeadTime
TrailTime
LineWidth
TrailLineColor
LeadLineColor
VisibilityMode

play(sc)

ounce: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CHNES/Airbus DS, USDA, USGES, AsnGRID, IGN, and the GIS User Community

Tips
When saving the satellite scenario, either save the entire workspace containing the scenario
object or save the scenario object itself.

3-21

3 Objects

See Also

Objects
satellite | satelliteScenarioViewer

Functions
play | show | hide | access | groundStation

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”

“Comparison of Orbit Propagators”

“Modeling Satellite Constellations Using Ephemeris Data”

“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

3-22

skyplot

skyplot

Plot satellite azimuth and elevation data

Syntax

azdata,eldata)
azdata,eldata, labeldata)
status)

____,Name, Value)

skyplot
skyplot
skyplot
skyplot

—~ e~~~

skyplot(parent,)
h = skyplot(_)

Description

skyplot(azdata,eldata) creates a sky plot using the azimuth and elevation data specified as
vectors in degrees. Azimuth angles are measured in degrees, clockwise-positive from the North
direction. Elevation angles are measured from the horizon line with 90 degrees being directly up. For
details about the sky plot figure elements, see “Main Sky Plot Elements” on page 3-29.

skyplot(azdata,eldata, labeldata) specifies data labels as a string array with elements
corresponding to each data point in the azdata and eldata inputs.

skyplot(status) specifies the azimuth and elevation data in a structure with fields
SatelliteAzimuth and SatelliteElevation.

skyplot(,Name, Value) specifies options using one or more name-value arguments in addition
to the input arguments in previous syntaxes. The name-value arguments are properties of the
SkyPlotChart object. For a list of properties, see SkyPlotChart Properties.

skyplot(parent,) creates the sky plot in the figure, panel, or tab specified by parent.
h = skyplot() returns the sky plot as a SkyPlotChart object, h. Use h to modify the

properties of the chart after creating it. For a list of properties, see SkyPlotChart Properties.

Examples

View Satellite Positions from GNSS Sensor

Create a GNSS sensor model as a gnssSensor (Navigation Toolbox) System Object™.

gnss = gnssSensor;

Specify the position and velocity of the sensor. Simulate the sensor readings and get status from
visible satellites. Store the azimuth and elevation angles as vectors.

[0 06 0];
[0 06 0];
, status] = gnss(pos, vel);

pos
vel
[~,

tonon

3-23

3 Objects

satAz
satEl

status.SatelliteAzimuth;
status.SatelliteElevation;

Plot the satellite postions.

skyplot(satAz,satEl)

]
330 30
@ O
300 e O 60
®
W
0 20 40 60 80
g O
O
240 @ 120
e
210 150
35

Plot Series of Satellite Positions Over Time
Animate the trajectory of satellite positions over time from a GNSS sensor.

Initialize the sky plot figure. Specify the relevant time-stepping information.

skyplotHandle = skyplot(0,0);

3-24

skyplot

&
330 30
300 60
W E
0 20 40 60 80
240 120
210 150
5

numHours = 12;

dt = 100;

numSeconds = numHours * 60 * 60;
numSimSteps = numSeconds/dt;

Create a GNSS sensor model as a gnssSensor (Navigation Toolbox) System Object™.
gnss = gnssSensor('SampleRate', 1/dt);

Iterate through the time steps and do the following:

+ Simulate the sensor readings. Specify the zero postion and velocity for the stationary sensor.
* Store the azimuth and elevation angles as vectors.
* Set the AzimuthData and ElevationData properties of the SkyPlotChart handle directly.

for i = l:numSimSteps

[~, ~, status] = gnss([0 0 0],[0 0 0]);
satAz = status.SatelliteAzimuth;
satEl = status.SatelliteElevation;

set(skyplotHandle, 'AzimuthData',satAz, 'ElevationData’',satEl);

drawnow
end

3-25

3 Objects

3-26

N
330 30
O @®
300 80
@
O
@
W E
0 20 40 60 80
@
@
240 120
@
210 150
s

View Satellite Positions For Different Groups

Load the azimuth and elevation data from a logfile generated by an Adafruit® GPS satellite sensor.
The data provided in this example contains the azimuth and elevation of each satellite and the
pseudorandom noise (PRN) codes. Store these values as vectors.

load('gpsHWInfo', "hwInfo')

satAz = hwInfo.SatelliteAzimuths;
satEl = hwInfo.SatelliteElevations;
prn = hwInfo.SatellitePRNs;

Separate the satellites based on the PRN codes. To correlate each position with a group, create a
categorical array. For this set of satellites, only the ones with PRNs less than 32 are used in the
positioning solution.

isUnused = (prn > 32);
group = categorical(isUnused,[false true],["Used in Positioning Solution" "Unused"]);

Visualize the satellites and specify the categorical groups in the GroupData name-value argument.
Specify the PRN as the label for each point. Show the legend.

skyplot(satAz,satEl,prn,GroupData=group)
legend('Used', 'Unused')

skyplot

N
330 30
@
300 ® 60
O @
. 14
O O @ @ Used
w i Gl E o u d
0 20 40 60 B0 O use
®
II;IH\I
240 120
@
210 150
S

Input Arguments

azdata — Azimuth angles for visible satellite positions
n-element vector of angles

Azimuth angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Azimuth angles are measured in degrees, clockwise-
positive from the North direction.

Example: [25 45 182 356]
Data Types: double

eldata — Elevation angles for visible satellite positions
n-element vector of angles

Elevation angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Elevation angles are measured from the horizon line
with 90 degrees being directly up.

Example: [45 90 27 74]
Data Types: double

labeldata — Labels for visible satellite positions
n-element string array

3-27

3 Objects

3-28

Labels for visible satellite positions, specified as an n-element string array. n is the number of visible
satellite positions in the plot.

EXamPIE' [IIGlII IIGllII IIG7II IIG3II]
Data Types: string

status — Satellite status
structure array

Satellite status, specified as a structure array with fields SatelliteAzimuth and
SatelliteElevation. Typically, this status structure comes from a gnssSensor object, which
simulates satellite positions and velocities.

Example: gnss = gnssSensor; [~,~,status] = gnss(position,velocity)

Data Types: struct

parent — Parent container
Figure object | Panel object | Tab obhject | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Output Arguments

h — Sky plot chart
SkyplotChart object

Sky plot chart, returned as a SkyplotChart object, which is a standalone visualization on page 3-
29. Use h to set properties on the sky plot chart. For more information, see SkyPlotChart Properties
(Navigation Toolbox).

skyplot

More About

Main Sky Plot Elements

D] I
//’j!
//
Labels
@ |
-
El
G14 .
@
)
\\
\L\H_
™~
3

The main elements of the figure are:

Standalone Visualization

Azimuth angles

G7 sy
O
/ Groups
III @ GPS
| E ‘ () Galileo
Ei7 I,'I
/”f
f’//
~'/

Azimuth axes — Specified by the azdata input argument, azimuth angle positions are measured
clockwise-positive from the North direction.

Elevation axes —Specified by the eldata input argument, elevation angle positions are measured
from the horizon line with 90 degrees being directly up.

Labels — Specified by the labeldata input argument as a string array with an element for each
point in the azdata and eldata vectors.

Groups — Specified by the GroupData property, a categorical array defines the group for each
satellite position.

A standalone visualization is a chart designed for a special purpose that works independently from
other charts. Unlike other charts such as plot and surf, a standalone visualization has a
preconfigured axes object built into it, and some customizations are not available. A standalone
visualization also has these characteristics:

It cannot be combined with other graphics elements, such as lines, patches, or surfaces. Thus, the
hold command is not supported.

3-29

3 Objects

* The gca function can return the chart object as the current axes.

* You can pass the chart object to many MATLAB functions that accept an axes object as an input
argument. For example, you can pass the chart object to the title function.

See Also

Functions
polarscatter

Properties
SkyPlotChart Properties (Navigation Toolbox)

Objects
gnssSensor | nmeaParser

Introduced in R2021a

3-30

SkyPlotChart Properties

SkyPlotChart Properties

Sky plot chart appearance and behavior

Description

The SkyPlotChart properties control the appearance of a sky plot chart generated using the
skyplot function. To modify the chart appearance, use dot notation on the SkyPlotChart object:

h = skyplot;

h.AzimuthData = [45 120 295];
h.ElevationData = [10 45 60];
h.Labels = ["G1" "G4" "G1l1"];

Properties
Sky Plot Properties

AzimuthData — Azimuth angles for visible satellite positions
n-element vector of angles

Azimuth angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Angles are measured in degrees, clockwise-positive
from the North direction.

Example: [25 45 182 356]
Data Types: double

ElevationData — Elevation angles for visible satellite positions
n-element vector of angles

Elevation angles for visible satellite positions, specified as an n-element vector of angles. n is the
number of visible satellite positions in the plot. Angles are measured from the horizon line with 90
degrees being directly up.

Example: [45 90 27 74]
Data Types: double

LabelData — Labels for visible satellite positions
n-element string array

Labels for visible satellite positions, specified as an n-element string array. n is the number of visible
satellite positions in the plot.

EXample: [IIGlII IIG11II IIG7II IIG3II]
Data Types: string

GroupData — Group for each satellite position
categorical array

Group for each satellite position, specified as a categorical array. Each group has a different color
label defined by the ColorOrder property.

3-31

3 Objects

Example: [GPS GPS Galileo Galileo]
Data Types: double

ColorOrder — Color order
seven predefined colors (default) | three-column matrix of RGB triplets

Color order, specified as a three-column matrix of RGB triplets. This property defines the palette of
colors MATLAB uses to create plot objects such as Line, Scatter, and Bar objects. Each row of the
array is an RGB triplet. An RGB triplet is a three-element vector whose elements specify the
intensities of the red, green, and blue components of a color. The intensities must be in the range [0,
1]. This table lists the default colors.

Colors ColorOrder Matrix

[0 0.4470 0.7410
0.8500 0.3250 0.0980
0.9290 0.6940 0.1250
0.4940 0.1840 0.5560
0.4660 0.6740 0.1880
0.3010 0.7450 0.9330
0.6350 0.0780 0.1840]

MATLAB assigns colors to objects according to their order of creation. For example, when plotting
lines, the first line uses the first color, the second line uses the second color, and so on. If there are
more lines than colors, then the cycle repeats.

You can also set the color order using the colororder function.

Label Properties

LabelFontSize — Font size of labels
scalar numeric value

Font size of labels, specified as a scalar numeric value. The default font depends on the specific
operating system and locale.

Example: h = skyplot(,'LabelFontSize',12)

Example: h.LabelFontSize = 12

LabelFontSizeMode — Selection mode for font size of labels
'auto' (default) | 'manual'’

Selection mode for the font size of labels, specified as one of these values:

* 'auto' — Font size specified by MATLAB. If you resize the axes to be smaller than the default
size, the font size can scale down to improve readability and layout.

* 'manual' — Font size specified manually. MATLAB does not scale the font size as the axes size
changes. To specify the font size, set the LabelFontSize property.

3-32

SkyPlotChart Properties

Chart Properties

HandleVisibility — Visibility of object handle
‘on' (default) | 'off' | 'callback'

Visibility of the SkyPlotChart object handle in the Children property of the parent, specified as
one of these values:

* 'on' — Object handle is always visible.

+ 'off' — Object handle is invisible at all times. This option is useful for preventing unintended
changes to the UI by another function. To temporarily hide the handle during the execution of that
function, set the HandleVisibility to 'off'.

* 'callback' — Object handle is visible from within callbacks or functions invoked by callbacks,
but not from within functions invoked from the command line. This option blocks access to the
object at the command line, but allows callback functions to access it.

If the object is not listed in the Children property of the parent, then functions that obtain object
handles by searching the object hierarchy or querying handle properties cannot return it. This
includes get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on' to list all
object handles, regardless of their HandleVisibility property setting.

Layout — Layout options
empty LayoutOptions array (default) | TiledChartLayoutOptions object | GridLayoutOptions
object

Layout options, specified as a TiledChartLayoutOptions or GridLayoutOptions object. This
property is useful when the chart is either in a tiled chart layout or a grid layout.

To position the chart within the grid of a tiled chart layout, set the Tile and TileSpan properties on
the TiledChartLayoutOptions object. For example, consider a 3-by-3 tiled chart layout. The
layout has a grid of tiles in the center, and four tiles along the outer edges. In practice, the grid is
invisible and the outer tiles do not take up space until you populate them with axes or charts.

3-33

3 Objects

3-34

This code places the chart ¢ in the third tile of the grid..
c.Layout.Tile = 3;

To make the chart span multiple tiles, specify the TileSpan property as a two-element vector. For
example, this chart spans 2 rows and 3 columns of tiles.

c.Layout.TileSpan = [2 3];

To place the chart in one of the surrounding tiles, specify the Tile property as 'north', 'south’,
'east', or 'west'. For example, setting the value to 'east' places the chart in the tile to the right
of the grid.

c.Layout.Tile = 'east';

To place the chart into a layout within an app, specify this property as a GridLayoutOptions object.
For more information about working with grid layouts in apps, see uigridlayout.

If the chart is not a child of either a tiled chart layout or a grid layout (for example, if it is a child of a
figure or panel) then this property is empty and has no effect.

Parent — Parent container
Figure object | Panel object | Tab object | TiledChartLayout object | GridLayout object

Parent container, specified as a Figure, Panel, Tab, TiledChartLayout, or GridLayout object.

Marker Properties

MarkerEdgeAlpha — Marker edge transparency
1 (default) | scalar in range [0, 1] | ' flat'

Marker edge transparency, specified as a scalar in the range [0,1] or 'flat'. Avalue of 1 is
opaque and 0 is completely transparent. Values between 0 and 1 are semitransparent.

To set the edge transparency to a different value for each point in the plot, set the AlphaData
property to a vector the same size as the XData property, and set the MarkerEdgeAlpha property to
"flat'.

MarkerEdgeColor — Marker outline color
"flat' (default) | 'auto' | RGB triplet | hexadecimal colorcode | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto’', an RGB triplet, a hexadecimal color code, a color name, or
a short name. The value of 'auto' uses the same color as the Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]. For example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and the hexadecimal color codes.

SkyPlotChart Properties

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '"#FFO000' —

‘green' ‘g’ [0 1 0] '#OOFFOO'

'blue’ ‘b [0 0 1] '#0000FF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ m' [1 0 1] '"#FFOOFF' I

'yvellow' 'y! [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000' E—

'white' 'w' [111] "#FFFFFF']

'none’ Not Not applicable Not applicable No color

applicable

This table shows the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in
many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] "#77AC30' I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

MarkerFaceAlpha — Marker face transparency
0.6 (default) | scalar in range [0,1] | ' flat'

Marker face transparency, specified as a scalar in the range [0,1] or ' flat'. A value of 1 is opaque
and 0 is completely transparent. Values between 0 and 1 are partially transparent.

To set the marker face transparency to a different value for each point, set the AlphaData property
to a vector the same size as the XData property, and set the MarkerFaceAlpha property to 'flat'.

MarkerFaceColor — Marker fill color
‘flat' (default) | 'auto' | 'none’ | RGB triplet | hexadecimal colorcode | 'r* | 'g' | 'b' | ...

Marker fill color, specified as 'flat', 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'flat' option uses the CData values. The 'auto' option uses the same
color as the Color property for the axes.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

3-35

3 Objects

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800"', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r! [1 0 0] '"#FFO000"' —

'green' ‘g’ [0 1 0] '#OOFFOO'

'blue’ ‘b [0 0 1] '#0000FF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ 'm' [1 0 1] '"#FFOOFF' I

'yvellow' 'y! [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000' E—

'white' 'w' [111] "#FFFFFF']

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' —
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] "#TE2F8E' —
[0.4660 0.6740 0.1880] "#77AC30"' —
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' —

Example: [0.3 0.2 0.1]
Example: 'green’
Example: '#D2F9A7'

MarkerSizeData — Marker size
100 (default) | positive scalar | vector of positive values

Marker size, specified as a positive scalar or vector of positive values in points, where one point =
1/72 of an inch. If specified as a vector, the vector must be of the same length as AzimuthData.

Position

PositionConstraint — Position to hold constant
'outerposition' | 'innerposition’

3-36

SkyPlotChart Properties

Position property to hold constant when adding, removing, or changing decorations, specified as one
of the following values:

* ‘'outerposition' — The OuterPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the InnerPosition property.

* ‘'innerposition' — The InnerPosition property remains constant when you add, remove, or
change decorations such as a title or an axis label. If any positional adjustments are needed,
MATLAB adjusts the OuterPosition property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

OuterPosition — Outer size and location
[0 0 1 1] (default) | four-element vector

Outer size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. The outer position
includes the colorbar, title, and axis labels.

 The left and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the skyplot.

* The width and height elements are the skyplot dimensions, which include the skyplot cells, plus
a margin for the surrounding text and colorbar.

The default value of [0 © 1 1] covers the whole interior of the container. The units are normalized
relative to the size of the container. To change the units, set the Units property.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

InnerPosition — Inner size and location
[0.1300 0.1100 0.7750 0.8114] (default) | four-element vector

Inner size and location of the skyplot within the parent container (typically a figure, panel, or tab),
specified as a four-element vector of the form [left bottom width height]. The inner position
does not include the colorbar, title, or axis labels.

e The left and bottom elements define the distance from the lower-left corner of the container to
the lower-left corner of the skyplot.

* The width and height elements are the skyplot dimensions, which include only the skyplot cells.

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Position — Inner size and location
four-element vector

Inner size and location of the skyplot within the parent container (typically a figure, panel, or tab),

specified as a four-element vector of the form [left bottom width height]. This property is
equivalent to the InnerPosition property.

3-37

3 Objects

Note Setting this property has no effect when the parent container is a TiledChartLayout.

Units — Position units
‘normalized’' (default) | 'inches' | 'centimeters' | 'points' | 'pixels' | 'characters’

Position units, specified as one of these values.

Units Description

‘normalized' (default) Normalized with respect to the container, which
is typically the figure or a panel. The lower left
corner of the container maps to (0,0), and the
upper right corner maps to (1,1).

'inches' Inches.
'centimeters' Centimeters.
'characters' Based on the default uicontrol font of the

graphics root object:

e Character width = width of letter x.

* Character height = distance between the
baselines of two lines of text.

'points’ Typography points. One point equals 1/72 inch.

'pixels’ Pixels.

Starting in R2015b, distances in pixels are
independent of your system resolution on
Windows® and Macintosh systems:

* On Windows systems, a pixel is 1/96th of an
inch.

* On Macintosh systems, a pixel is 1/72nd of an
inch.

On Linux® systems, the size of a pixel is
determined by your system resolution.

When specifying the units as a name-value argument during object creation, you must set the Units
property before specifying the properties that you want to use these units, such as OuterPosition.

Visible — State of visibility
‘on' (default) | on/off logical value

State of visibility, specified as 'on' or 'off"', or as numeric or logical 1 (true) or 0 (false). A value
of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this
property as a logical value. The value is stored as an on/off logical value of type
matlab.lang.0n0OffSwitchState.

* 'on' — Display the skyplot.

+ 'off' — Hide the skyplot without deleting it. You can still access the properties of an invisible
SkyPlotChart object.

3-38

SkyPlotChart Properties

See Also

Functions
skyplot | polarscatter

Objects
gnssSensor | nmeaParser

Introduced in R2021a

3-39

3 Objects

3-40

Satellite

Satellite object belonging to satellite scenario

Description

Satellite defines a satellite object belonging to a satellite scenario.

Creation

You can create Satellite objects using the satellite method of satelliteScenario.

Properties

Orbit — Orbit graphic
Orbit object

Orbit object parameters for a satellite, specified as an orbit object. Only these object properties are
relevant for this function.

LineColor — Color of orbit
[1,0,0] (default) | RGB triplet | hexadecimal colorcode | 'r' | 'g' | 'b'

Color of the orbit, specified as an RGB triplet, hexadecimal color code, a color name, or a short name.
For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800"', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '#FFO000O ' —

‘green’ ‘g’ [0 1 0] '#0OFFOO'

'blue’ ‘b [0 0 1] '#000OFF' ——

‘cyan' ‘c' [0 1 1] '#O0OFFFF'

‘magenta’ ‘m' [1 0 1] '#FFOOFF' I

'yvellow' 'y! [110] '#FFFFOO'

Satellite

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code
'black "K' [0 0 O] '#000000' ——
'white' ‘'w' [111] '"#FFFFFF' —
'none’ Not Not applicable Not applicable No color
applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319" I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7TE2F8E' I
[0.4660 0.6740 0.1880] '#77AC30" I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] '#A2142F' I

Example: 'blue’
Example: [0 0 1]
Example: '#0000FF"

LineWidth — Visual width of orbit
1 (default) | scalar in the range (0, 10)

Visual width of orbit in pixels, specified as a scalar in the range (0, 10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

VisibilityMode — Visibility mode of orbit graphic
"inherit' (default) | 'manual’

Visibility mode of orbit graphic, specified as one of these values:

* 'inherit' — Visibility of the graphic matches that of the parent
* 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Data Types: char | string

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling Satellite. After you call Satellite, this property is read-
only.

Access analysis objects, specified as a row vector of Access objects.

3-41

3 Objects

MarkerColor — Color of marker

[1 0 0] (default) | RGB triplet|string scalar of color name | character vector of

color name

Color of the marker, specified as a comma-separated pair consisting of 'MarkerColor' and either an

RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

Alternatively, you can specify some common colors by name. This table lists the named color options,

[0.4 0.6 0.7].

the equivalent RGB triplets, and hexadecimal color codes.

An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,

A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800"', '#F80', and '#f80' are equivalent.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '#FFO000' —

‘green’ ‘g! [0 1 0] '#00FF00'

"blue’ ‘b’ [0 0 1] '#0O0OFF' I

‘cyan' ‘c! [0 11] '#O0OFFFF'

'magenta’ ‘m' [1 0 1] '#FFOOFF' I

'yvellow' 'y' [1 1 0] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000" ——

'white' ‘w' [111] '"#FFFFFF' —

‘none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many

types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120"

[0.4940 0.1840 0.5560] "#7E2F8E' I
[0.4660 0.6740 0.1880] '#77AC30" I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

MarkerSize — Size of marker
10 (default) | positive scalar less than 30

3-42

Satellite

Size of the marker, specified as a comma-separated pair consisting of 'MarkerSize' and a real
positive scalar less than 30. The unit is in pixels.

ShowLabel — State of Satellite label visibility
true or 1 (default) | falseor 0

State of Satellite label visibility, specified as a comma-separated pair consisting of 'ShowLabel' and
numerical or logical value of 1 (true) or 0 (false).

Data Types: logical

LabelFontSize — Font size of Satellite label
15 (default) | positive scalar less than 30

Font size of the Satellite label, specified as a comma-separated pair consisting of 'LabelFontSize'
and a positive scalar less than 30.

LabelFontColor — Font color of Satellite label
[1,0,0] (default) | RGB triplet |string scalar of color name | character vector of
color name

Font color of the Satellitelabel, specified as a comma-separated pair consisting of
'LabelFontColor' and either an RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '#FF0O000 ' —

‘green’ ‘g’ [0 1 0] '#0OFFOO'

"blue'’ ‘b [0 0 1] '#0000FF' —

‘cyan' ‘c' [0 1 1] '#OOFFFF'

'magenta’ 'm' [1 0 1] '#FFOOFF' I

'yellow' 'y! [11 0] '"#FFFFOO'

'black’ 'k [0 0 O] '#000000" —

'white' 'w! [111] '"#FFFFFF' I—

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

3-43

3 Objects

3-44

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] "#77AC30' I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Name — Satellite name
"Satellite idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling Satellite. After you call Satellite, this property is read-
only.

Satellite name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

» If only one Satellite is added, specify Name as a string scalar or a character vector.

» If multiple Satellites are added, specify Name as a string vector or a cell array of character
vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the Satellite added by the Satellite object function. If
another Satellite of the same name exists, a suffix idx, is added, where idx, is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

ID — Satellite ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
Satellite ID assigned by the simulator, specified as a positive scalar.

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the Satellite, specified as a row vector of conical sensors.

Gimbals — Gimbals
row vector of Gimbal objects

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

Gimbals attached to the Satellite, specified as the comma-separated pair consisting of 'Gimbals'
and a row vector of Gimbal objects.

Satellite

OrbitPropagator — Name of orbit propagator
"sgp4" (default) | "two-body-keplerian" | “sdp4" | "ephemeris™

You can set this property when calling satellite only. After you call satellite, this property is
read-only.

Name of the orbit propagator used for propagating satellite position and velocity, specified as the
comma-separated pair consisting of 'OrbitPropagator' and either "two-body-keplerian®,
"sgp4", "sdp4", or "ephemeris".

Dependencies

OrbitPropagator is not available for ephemeris data inputs (timetable or timeseries). In these
cases, satellite ignores this name-value pair.

Data Types: string | char

Receivers — Receivers attached to Satellite
row vector of Receiver objects

You can set this property only when calling receiver. After you call receiver, this property is read-
only.

Receivers attached to the Satellite, specified as a row vector of Receiver objects.

Transmitters — Transmitters attached to Satellite
row vector of Transmitter objects

You can set this property only when calling transmitter. After you call transmitter, this property
is read-only.

Transmitters attached to the Satellite, specified as a row vector of Transmitter objects.

GroundTrack — Ground track of the Satellite
row vector of GroundTrack objects

You can set this property only when calling groundTrack. After you call groundTrack, this property
is read-only.

Ground track of the Satellite, specified as a row vector of GroundTrack objects.

Object Functions

access Add access analysis objects to satellite scenario

states Position and velocity of satellite

conicalSensor Add conical sensor to satellite scenario

pointAt Target at which entity must be pointed

transmitter Add transmitter to satellite scenario

gimbal Add gimbal to satellite or ground station

receiver Add receiver to satellite scenario

show Show object in satellite scenario viewer

aer Calculate azimuth angle, elevation angle, and range in NED frame from another
satellite or ground station

hide Hides satellite scenario entity from viewer

groundTrack Add ground track object to satellite in scenario

3-45

3 Objects

3-46

orbitalElements Orbital elements of satellites in scenario

Examples

Visualize Line of Sight Between Two Satellites

Create a satelliteScenario object.

startTime = datetime(2020,5,5,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; %sseconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Add a satellite from a TLE file to the scenario.

tleFile = "eccentricOrbitSatellite.tle";
satl = satellite(sc,tleFile, "Name","Satl")

satl =
Satellite with properties:

Name: Satl
ID: 1
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sdp4
MarkerColor: [1 0 0]
MarkerSize: 10
ShowLabel: true
LabelFontColor: [1 0 0]
LabelFontSize: 15

Add a satellite from Keplerian elements to the scenario and specify its orbit propagator to be "two-
body-keplerian".

semiMajorAxis = 6878137;
eccentricity = 0;

inclination = 20;
rightAscensionOfAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;

sat2 = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode, ...

argumentOfPeriapsis,trueAnomaly, "OrbitPropagator", "two-body-keplerian", "Name", "Sat2")

sat2 =
Satellite with properties:

Name: Sat2
ID: 2
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]

o°
3

%sdeg
%sdeg
%sdeg
%sdeg

Satellite

Gimbals:
Transmitters:
Receivers:
Accesses:
GroundTrack:
Orbit:
OrbitPropagator:
MarkerColor:
MarkerSize:

matlabshared.satellitescenario.Gimbal]
satcom.satellitescenario.Transmitter]
satcom.satellitescenario.Receiver]
matlabshared.satellitescenario.Access]
matlabshared.satellitescenario.GroundTrack]
matlabshared.satellitescenario.Orbit]
two-body-keplerian

[1 0 0]

10

Label
Labe

ShowlLabel:
FontColor:
1FontSize:

true
[1 0 0]
15

Add access analysis between the two satellites.

ac =

Determine the times when there is line of sight between the two satellites.

access(satl,sat2);

accessIntervals(ac)

ans=15x8 table
Source Target IntervalNumber StartTime EndTime Durati
"Satl" "Sat2" 1 05-May-2020 00:09:00 05-May-2020 01:08:00 3540
"Satl" "Sat2" 2 05-May-2020 01:50:00 05-May-2020 02:47:00 3420
"Satl" "Sat2" 3 05-May-2020 03:45:00 05-May-2020 04:05:00 1200
"Satl" "Sat2" 4 05-May-2020 04:32:00 05-May-2020 05:26:00 3240
"Satl" "Sat2" 5 05-May-2020 06:13:00 05-May-2020 07:10:00 3420
"Satl" "Sat2" 6 05-May-2020 07:52:00 05-May-2020 08:50:00 3480
"Satl" "Sat2" 7 05-May-2020 09:30:00 05-May-2020 10:29:00 3540
"Satl" "Sat2" 8 05-May-2020 11:09:00 05-May-2020 12:07:00 3480
"Satl" "Sat2" 9 05-May-2020 12:48:00 05-May-2020 13:46:00 3480
"Satl" "Sat2" 10 05-May-2020 14:31:00 05-May-2020 15:27:00 3360
"Satl" "Sat2" 11 05-May-2020 17:12:00 05-May-2020 18:08:00 3360
"Satl" "Sat2" 12 05-May-2020 18:52:00 05-May-2020 19:49:00 3420
"Satl" "Sat2" 13 05-May-2020 20:30:00 05-May-2020 21:29:00 3540
"Satl" "Sat2" 14 05-May-2020 22:08:00 05-May-2020 23:07:00 3540
"Satl" "Sat2" 15 05-May-2020 23:47:00 06-May-2020 00:00:00 780

Visualize the line of sight between the satellites.

play(sc);

3-47

3 Objects

3-48

4 Satellde Scenamd Viewer o= [}

-
S
dary 55 R e [, Maxw, Geol'pe, [arthtsr Geographios, G St O, LISOA, LFS00%, AemCEnD, 1, snd $u 035 User GCommanity

A TH LTS

| Al » 5 0 0 UTC ﬂ.-rr;..\'i.:'ﬂﬂé 0l b UTC iy 5 hicH 1308 &3 LITC My 5 2000 18 86.00 UTC Mary & S |
Al | | |

References

[1] Hoots, Felix R., and Ronald L. Roehrich. Models for propagation of NORAD element sets.
Aerospace Defense Command Peterson AFB CO Office of Astrodynamics, 1980.

See Also

Objects
satelliteScenario | groundStation | access | satelliteScenarioViewer

Functions
show | play | hide

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”

“Comparison of Orbit Propagators”

“Modeling Satellite Constellations Using Ephemeris Data”

“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

GroundStation

GroundStation

Ground station object belonging to satellite scenario

Description

The GroundStation object defines a ground station object belonging to a satellite scenario.

Creation

You can create GroundStation object using the groundStation object function of the
satelliteScenario object.

Properties

Name — GroundStation name
"GroundStation idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

GroundStation name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

» If only one GroundStation is added, specify Name as a string scalar or a character vector.

» If multiple GroundStations are added, specify Name as a string vector or a cell array of character
vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the GroundStation added by the GroundStation object
function. If another GroundStation of the same name exists, a suffix idx, is added, where idx; is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

ID — GroundStation ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
GroundStation ID assigned by the simulator, specified as a positive scalar.

Latitude — Geodetic latitude of ground stations
42 .3001 (default) | scalar | row vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Geodetic latitude of ground stations, specified as a scalar. Values must be in the range [-90, 90].

3-49

3 Objects

» Ifyou add only one ground station, specify Latitude as a scalar double.

+ Ifyou add multiple ground stations, specify Latitude as a vector double whose length is equal to
the number of ground stations being added.

When latitude and longitude are specified as lat, lon inputs to GroundStation, Latitude specified

as a name-value argument takes precedence.

Data Types: double

Longitude — Geodetic longitude of ground stations
-71.3504 (default) | scalar | row vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Geodetic longitude of ground stations, specified as a scalar or a vector. Values must be in the range

[-180, 180].

» Ifyou add only one ground station, specify longitude as a scalar.

+ Ifyou add multiple ground stations, specify longitude as a vector whose length is equal to the
number of ground stations being added.

When longitude and longitude are specified as lat, lon inputs to GroundStation, longitude

specified as a name-value argument takes precedence.

Data Types: double

Altitude — Altitude of ground station
0 m (default) | scalar | vector

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Altitude of ground stations, specified as a scalar or a vector.

* Ifyou specify Altitude as a scalar, the value is assigned to each ground station in the
GroundStation.

* Ifyou specify Altitude as a vector, the vector length must be equal to the number of ground
stations in the GroundStation.

When latitude and longitude are specified as lat, lon inputs to GroundStation, Latitude specified
as a name-value argument takes precedence.

Data Types: double

MinElevationAngle — Minimum elevation angle
0 (default) | scalar | vector

Minimum elevation angle of a satellite for the satellite to be visible from the ground station, specified
as a scalar or row vector. Values must be in the range [-90, 90]. For access and link closure to be
possible, the elevation angle must be at least equal to the value specified in MinElevationAngle.

» Ifyou specify MinElevationAngle as a scalar, the value is assigned to each ground station in the
GroundStation.

3-50

GroundStation

» Ifyou specify MinElevationAngle as a vector, the vector length must be equal to the number of
ground stations in the GroundStation.

Data Types: double

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling GroundStation. After you call GroundStation, this
property is read-only.

Access analysis objects, specified as a row vector of Access objects.

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the GroundStation, specified as a row vector of conical sensors.

Gimbals — Gimbals
row vector of Gimbal objects

You can set this property only when calling gimbal. After you call gimbal, this property is read-only.

Gimbals attached to the GroundStation, specified as the comma-separated pair consisting of
'Gimbals' and a row vector of Gimbal objects.

Transmitters — Transmitters attached to GroundStation
row vector of Transmitter objects

You can set this property only when calling transmitter. After you call transmitter, this property
is read-only.

Transmitters attached to the GroundStation, specified as a row vector of Transmitter objects.

Receivers — Receivers attached to GroundStation
row vector of Receiver objects

You can set this property only when calling receiver. After you call receiver, this property is read-
only.

Receivers attached to the GroundStation, specified as a row vector of Receiver objects.
MarkerColor — Color of marker
[1 0 O] (default) | RGB triplet |string scalar of color name | character vector of

color name

Color of the marker, specified as a comma-separated pair consisting of 'MarkerColor' and either an
RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

3-51

3 Objects

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800"', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '#FFOO00O' —

‘green’ ‘g’ [0 1 0] '#0OFFOO'

'blue'’ 'b! [0 0 1] '#000OFF' —

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ ‘m' [1 0 1] '#FFOOFF' I

'yellow' 'y! [11 0] '"#FFFFOO'

'black’ k! [0 0 O] '#000000" —

'white' 'w' [111] '"#FFFFFF']

‘none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many

types of plots.

RGB Triplet Hexadecimal Color Code Appearance

[0 0.4470 0.7410] '#0072BD' I

[0.8500 0.3250 0.0980] '#D95319' —

[0.9290 0.6940 0.1250] '#EDB120"

[0.4940 0.1840 0.5560] '#TE2F8E' —

[0.4660 0.6740 0.1880] '#77AC30" —

[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] '#A2142F' —

MarkerSize — Size of marker
10 (default) | positive scalar less than 30

Size of the marker, specified as a comma-separated pair consisting of 'MarkerSize' and a real
positive scalar less than 30. The unit is in pixels.

ShowLabel — State of GroundStation label visibility
true or 1 (default) | false or 0

State of GroundStation label visibility, specified as a comma-separated pair consisting of
'ShowLabel' and numerical or logical value of 1 (true) or 0 (false).

3-52

GroundStation

Data Types: logical

LabelFontSize — Font size of GroundStation label
15 (default) | positive scalar less than 30

Font size of the GroundStation label, specified as a comma-separated pair consisting of
'LabelFontSize' and a positive scalar less than 30.

LabelFontColor — Font color of GroundStation label
[1,0,0] (default) | RGB triplet |string scalar of color name | character vector of
color name

Font color of the GroundStationlabel, specified as a comma-separated pair consisting of
'LabelFontColor' and either an RGB triplet or a string or character vector of a color name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '#FFOO00O' —

‘green’ ‘g’ [0 1 0] '#OOFFOO'

'blue’ ‘b [0 0 1] '#OO0OFF' I

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ ‘m' [1 0 1] '#FFOOFF' I

'yvellow' 'y! [110] '#FFFFOO'

'black’ 'k [0 0 0] '#000000' ——

'white' 'w' [111] '"#FFFFFF' —

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319" I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7TE2F8E' I

3-53

3 Objects

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] "#77AC30' I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Object Functions

access Add access analysis objects to satellite scenario

conicalSensor Add conical sensor to satellite scenario

transmitter Add transmitter to satellite scenario

receiver Add receiver to satellite scenario

gimbal Add gimbal to satellite or ground station

show Show object in satellite scenario viewer

aer Calculate azimuth angle, elevation angle, and range in NED frame from another
satellite or ground station

hide Hides satellite scenario entity from viewer

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

startTime = datetime(2020, 5, 1, 11, 36, 0);

stopTime = startTime + days(1l);

sampleTime = 60;

sc = satelliteScenario(startTime, stopTime, sampleTime);
lat [10];

lon [-301;

gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 10;

rightAscension0OfAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc, semiMajorAxis, eccentricity, inclination,
rightAscension0OfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8x8 table
Source Target IntervalNumber StartTime EndTi

"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020

3-54

GroundStation

"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020
"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

munity

See Also

Objects
satelliteScenario | satelliteScenarioViewer

3-55

3 Objects

Functions
show | play | hide | satellite | access | groundStation | conicalSensor | transmitter |
receiver

Topics

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Constellation Access to a Ground Station”

“Comparison of Orbit Propagators”

“Modeling Satellite Constellations Using Ephemeris Data”

“Estimate GNSS Receiver Position with Simulated Satellite Constellations”
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

3-56

Access

Access

Access analysis object belonging to scenario

Description

The Access object defines an access analysis object belonging to a Satellite, GroundStation or
ConicalSensor.

Creation

You can create an Access object using the access object function of GroundStation or
Satellite.

Properties

Sequence — Satellite, ground station, or conical sensor ID
row vector of positive real numbers

You can set this property only when calling access. After you call access, this property is read-only.
Satellite, ground station, or conical sensor ID defining the nodes of access analysis.

LineWidth — Visual width of access analysis object
1 (default) | scalar

Visual width of access analysis object in pixels, specified as a scalar in the range (0, 10).

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of analysis line
[0.5 0 1] (default) | RGB triplet | hexadecimal color code | color name | short name

Color of access analysis line, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800"', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

3-57

3 Objects

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '"#FFO000' —

‘green' ‘g’ [0 1 0] '#OOFFOO'

'blue’ ‘b [0 0 1] '#0000FF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ m' [1 0 1] '"#FFOOFF' I

'yvellow' 'y! [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000' E—

'white' 'w' [111] "#FFFFFF']

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' —
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] '#77AC30" I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Example: 'blue’
Example: [0 0 1]
Example: '#0000FF"

Object Functions

show Show object in satellite scenario viewer
accessStatus Status of access between first and last node defining access analysis
accessIntervals Intervals during which access status is true

accessPercentage Percentage of time when access exists between first and last node defining
access analysis
hide Hides satellite scenario entity from viewer

Examples

Add Ground stations to Scenario and Visualize Access Intervals

Create satellite scenario and add ground stations from latitudes and longitudes.

3-58

Access

startTime = datetime(2020, 5,

1, 11, 36, 0);

stopTime = startTime + days(1);
sampleTime = 60;

sc = satelliteScenario(startTime, stopTime, sampleTime);

lat
lon

[10];
[-30];

gs = groundStation(sc, lat, lon);

Add satellites using Keplerian elements.

semiMajorAxis 10000000;
eccentricity = 0;
inclination = 10;

rightAscension0OfAscendingNode

argumentOfPeriapsis = 0;

trueAnomaly = 0
sat = satellite(sc, semiMajorAxis, eccentricity, inclination,

’

=0;

rightAscension0OfAscendingNode, argumentOfPeriapsis, trueAnomaly);

Add access analysis to the scenario and obtain the table of intervals of access between the satellite
and the ground station.

ac = access(sat, gs);
intvls = accessIntervals(ac)

intvls=8x8 table

Source Target IntervalNumber StartTime EndTir
"Satellite 2" "Ground station 1" 1 01-May-2020 11:36:00 01-May-2020
"Satellite 2" "Ground station 1" 2 01-May-2020 14:20:00 01-May-2020
"Satellite 2" "Ground station 1" 3 01-May-2020 17:27:00 01-May-2020
"Satellite 2" "Ground station 1" 4 01-May-2020 20:34:00 01-May-2020
"Satellite 2" "Ground station 1" 5 01-May-2020 23:41:00 02-May-2020
"Satellite 2" "Ground station 1" 6 02-May-2020 02:50:00 02-May-2020
"Satellite 2" "Ground station 1" 7 02-May-2020 05:59:00 02-May-2020
"Satellite 2" "Ground station 1" 8 02-May-2020 09:06:00 02-May-2020

Play the scenario to visualize the ground stations.

play(sc)

3-59

3 Objects

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | conicalSensor | transmitter | receiver | satellite

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3-60

ConicalSensor

ConicalSensor

Conical sensor object belonging to satellite scenario

Description

ConicalSensor defines a conical sensor object belonging to a satellite scenario.

Creation

You can create the ConicalSensor object using the conicalSensor object function of the
Satellite or GroundStation objects.

Properties

Name — ConicalSensor name
"ConicalSensor idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property
is read-only.

ConicalSensor name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

* If only one ConicalSensor is added, specify Name as a string scalar or a character vector.

» If multiple ConicalSensors are added, specify Name as a string vector or a cell array of character
vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the ConicalSensor added by the ConicalSensor object
function. If another ConicalSensor of the same name exists, a suffix idx, is added, where idx, is an
integer that is incremented by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

ID — ConicalSensor ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
ConicalSensor ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

3-61

3 Objects

3-62

MaxViewAngle — Field of view angle
30 (default) | scalar in the range [0, 180]

Field of view angle, specified as a scalar in the range [0, 180]. Units are in degrees.

Accesses — Access analysis objects
row vector of Access objects

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property

is read-only.

Access analysis objects, specified as a row vector of Access objects.

FieldOfView — Field of view objects
row vector of FieldOfView objects

You can set this property only when calling ConicalSensor. After you call ConicalSensor, this property

is read-only.

Field of view objects, specified as a scalar of Field0fView objects.

Object Functions

access

Add access analysis objects to satellite scenario

fieldOfView Visualize field of view of conical sensor

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime =
stopTime =
sampleTime =
sc =

60;

SC =

satelliteScenario with properties:

StartTime:
StopTime:
SampleTime:
Viewers:
Satellites:
GroundStations:
AutoShow:

21-Jun-2021 08:55:
26-Jun-2021 08:55:

60

[0x0 matlabshared.
[1x0 matlabshared.
[1x0 matlabshared.

1

datetime(2021,6,21,8,55,0);
startTime + days(5);

o°

satelliteScenario(startTime,stopTime, sampleTime)

00
00

satellitescenario
satellitescenario
satellitescenario

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis =
eccentricity =

0;
inclination = 50;

7878137;

seconds

.Viewer]
.Satellite]
.GroundStation]

ConicalSensor

rightAscension0fAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 50;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode,
argumentOfPeriapsis, trueAnomaly)

sat =
Satellite with properties:

Name: Satellite 1
ID: 1
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sgp4
MarkerColor: [1 0 0]
MarkerSize: 10
ShowLabel: true
LabelFontColor: [1 0 0]
LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph",
"Latitude",42.3001, "Longitude",-71.3504) % degrees

gs =
GroundStation with properties:

Name: Location To Photograph
ID: 2
Latitude: 42.3 degrees
Longitude: -71.35 degrees
Altitude: 0 meters
MinElevationAngle: 0 degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
MarkerColor: [0 1 1]
MarkerSize: 10
ShowLabel: true
LabelFontColor: [0 1 1]
LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.
g = gimbal(sat)

Gimbal with properties:

3-63

o° o o°
o o o

3 Objects

3-64

Name: Gimbal 3
ID: 3
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.
pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g, "MaxViewAngle",b60)

camSensor =
ConicalSensor with properties:

Name: Conical sensor 4
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
MaxViewAngle: 60 degrees
Accesses: [1x0 matlabshared.satellitescenario.Access]
FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac

access(camSensor,gs)

ac =
Access with properties:

Sequence: [4 2]
LineWidth: 1
LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

ConicalSensor

4 Satellae Scenans Viewer = o

Souroe: D, Maxw, ool ye, Latheter Geographeos, TR0t 06, LITGOA, LSO, AsmolE0, W0, and) T CHLY Usew Communty

, dun 23 T 00008 UTC

Jun 4 M 50:08 08 UTC
|

Jeam 16 32 e 0 00
|

Determine the intervals during which the camera can see the geographical site.

t =

t=35x8 table

accessIntervals(ac)

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00
"Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00
"Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00
"Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00
"Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00

sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00

"Conical

Calculate the maximum revisit time in hours.

3-65

3 Objects

3-66

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(l:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667
Visualize the revisit times that photographs the location.

play(sc);

4 Satellae S enams Viewer —]

Sourme: Eu, Maxe? Geoliys, Dartheter Geographics, CHE S0t 05, LSO, LSO, AercfaI0, KM, and f (25 User Commanity
Jun X3 20CHT 00000 88 UTC Jun M M 80:00°08 UTC Jusm 6 202 G0 0000 1
| |

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | access | groundStation | transmitter | receiver

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

Transmitter

Transmitter

Transmitter object belonging to satellite scenario

Description

Transmitter defines a transmitter object belonging to a satellite scenario.

Creation

You can create Transmitter objects using the transmitter method of satellite, groundStation,
or gimbal.

Properties

Name — Transmitter name
"Transmitter idx" (default) | string scalar | string vector | character vector | cell array of
character vectors

You can set this property only when calling Transmitter. After you call Transmitter, this property is
read-only.

Transmitter name, specified as a comma-separated pair consisting of 'Name' and a string scalar,
string vector, character vector or a cell array of character vectors.

» If only one Transmitter is added, specify Name as a string scalar or a character vector.

» If multiple Transmitters are added, specify Name as a string vector or a cell array of character
vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the Transmitter added by the Transmitter object function. If
another Transmitter of the same name exists, a suffix idx, is added, where idx; is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

ID — Transmitter ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
Transmitter ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; O; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

3-67

3 Objects

3-68

MountingAngles — Mounting orientation with respect to parent object
[0; O; O] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

Example: [0; 30; 60]

Antenna — Antenna object associated with Transmitter
gaussianAntenna object | antenna object

Antenna object associated with the Transmitter, specified as an antenna object. This object can be
the default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array System
Toolbox. The default gaussian antenna has a dish diameter of 1 m and an aperture efficiency of 0.65.

SystemLoss — Total loss in Transmitter
5 (default) | positive scalar

Total loss in the Transmitter, specified as a real positive scalar. Units are in dB.

Frequency — Transmitter frequency
14e9 (default) | positive scalar

Transmitter frequency, specified as a positive scalar. Units are in Hz.

BitRate — Bit rate of transmitter
10 (default) | real positive scalar

Bit rate of the transmitter, specified as a real positive scalar. Units are in Mbps.

Power — Power of high power amplifier
12 (default) | real positive scalar

Power of the high power amplifier, specified as a real positive scalar. Units are in dbW.

Links — Link analysis objects
row vector of Link objects

You can set this property when calling Transmitter only. After you call Transmitter, this property is
read-only.

Link analysis objects, specified as a row vector Link objects.

Object Functions
gaussianAntenna Add Gaussian antennas
link Add link analysis objects to transmitter

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

Transmitter

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1);
sampleTime = 60;

% seconds

sc = satelliteScenario(startTime,stopTime,sampleTime)

SC =

satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020
SampleTime: 60
Viewers:

Satellites:

AutoShow:

Add a satellite to the scenario.

semiMajorAxis = 10000000;
eccentricity = 0;

inclination = 60;
rightAscension0fAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscension0fAscendingNode, ...

[0x0 matlabshared.satellitescenario.Viewer]
[1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared
1

.satellitescenario.GroundStation]

argumentOfPeriapsis, trueAnomaly, "Name", "Satellite");

Add a transmitter to the satellite.

frequency = 27e9;
power = 20;
bitRate = 20;
systemLoss = 3;

of

o® o° o o°

met

deg
deg
deg
deg

o o o° o°

txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency", frequency, "power", power,...
"BitRate",bitRate, "SystemLoss",systemLoss)

txSat =
Transmitter with properties:

Name: Satellite Transmitter

[1x1 satcom.satellitescenario.GaussianAntenna]

ID: 2
MountingLocation: [Q; 0; O] meters
MountingAngles: [0; 0; 0] degrees
Antenna:
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz

BitRate: 20 Mbps

Power: 20 decibel-watts

Links:

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5;
systemLoss = 3;

[1x0 satcom.satellitescenario.Link]

rxSat = receiver(sat, "Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemper:

"SystemLoss",systemLoss)

3-69

3 Objects

3-70

rxSat =
Receiver with properties:

Name: Satellite Receiver
ID: 3
MountingLocation: [0; 0; O] meters
MountingAngles: [0; O; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal
SystemLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % met
apertureEfficiency = 0.5;

gaussianAntenna(txSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc,"Name","Ground Station 1");

latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude, "Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; 0; -5];
mountingAngles = [0; 180; 0];
gimbalGsl = gimbal(gsl, "MountingLocation",mountinglLocation, "MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2, "MountingLocation"”,mountinglLocation, "MountingAngles",mountingAngles);

o o°

o 3
D

Track the satellite using the gimbals.

pointAt(gimbalGsl,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalGsl, "Name", "Ground Stationn 1 Transmitter","Frequency",frequency,...
"Power",power, "BitRate",bitRate);

o® o o°

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2, "Name","Ground Station 2 Receiver","RequiredEbNo", requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGsl,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Transmitter

Add link analysis to transmitter txGs1.
lnk = link(txGsl, rxSat, txSat, rxGs2)

lnk =
Link with properties:

Sequence: [8 3 2 9]

LinewWidth: 1
LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(1lnk)
ans=4x8 table
Source Target IntervalNumber Sta
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 1 25-Nov - 2(
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 2 25-Nov - 2(
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 3 25-Nov - 2(
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 4 25-Nov - 2(

Visualize the link using the Satellite Scenario Viewer.

play(sc);

4 Satellae Senans Vieser — o

« Ground SBation

. Ground Station 1

Souroe: D, Maow, Geol we, | srtheter Geographeos, TN S0t OFF, LIGDA, LSO, AseoUEH0, BN, snd S GG Uses Communty
| WMMEI‘IT.' My 25 2020 0F 0000 UTC P 35 SO0 12 00 00 UTE My 25 000 150000 LITC Hew 26 103
i ! |

3-71

3 Objects

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
play | show | hide | groundStation | access

Topics

“Model, Visualize, and Analyze Satellite Scenario”

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

Introduced in R2021a

3-72

Receiver

Receiver

Receiver object belonging to satellite scenario

Description

The Receiver object defines a receiver object function belonging to the satellite scenario.

Creation

You can create Receiver object using the receiver object function of the Satellite,
GroundStation, or Gimbal object.

Properties

Name — Receiver nhame
"Receiver idx" (default) | string scalar | string vector
vectors

character vector | cell array of character

You can set this property only when calling Receiver. After you call Receiver, this property is read-
only.

Receiver name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

* If only one Receiver is added, specify Name as a string scalar or a character vector.

» If multiple Receivers are added, specify Name as a string vector or a cell array of character
vectors. The number of elements in the string vector or cell array must be equal to the number of
satellites being added.

In the default value, idx is the count of the Receiver added by the Receiver object function. If
another Receiver of the same name exists, a suffix idx; is added, where idx, is an integer that is
incremented by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

ID — Receiver ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
Receiver ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; 0; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

3-73

3 Objects

3-74

MountingAngles — Mounting orientation with respect to parent object
[0; O; O] (default) | three-element row vector of positive numbers

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

Example: [0; 30; 60]

Antenna — Antenna object associated with Receiver
gaussianAntenna object | antenna ohject

Antenna object associated with the Receiver, specified as an antenna object. This object can be the
default gaussianAntenna object, or one from the Antenna Toolbox or Phased Array System Toolbox.
The default gaussian antenna has a dish diameter of 1 m and an aperture efficiency of 0.65.

SystemLoss — Total loss in Receiver
5 (default) | positive scalar

Total loss in the Receiver, specified as a real positive scalar. Units are in dB.

GainToNoiseTemperatureRatio — Gain to noise temperature ratio
3 (default) | scalar

Gain to noise temperature ratio of the antenna, specified as the comma-separated pair consisting of
'GainToNoiseTemperatureRatio' and a scalar. Units are in dB/K.

RequiredEbNo — Lowest Eb/No necessary for link closure
10 (default) | positive scalar

Lowest energy per bit to noise power spectral density ratio (Eb/No) necessary for link closure,
specified as the comma-separated pair consisting of 'RequiredEbNo' and a positive scalar. Units
are in dB.

Object Functions
gaussianAntenna Add Gaussian antennas

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1l);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sC =
satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020

Receiver

SampleTime: 60
Viewers: [0x0 matlabshared.satellitescenario.Viewer]
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
AutoShow: 1

Add a satellite to the scenario.

semiMajorAxis = 10000000;

eccentricity = 0;

inclination = 60;

rightAscension0fAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode, ...
argumentOfPeriapsis, trueAnomaly, "Name", "Satellite");

Add a transmitter to the satellite.

frequency = 27e9;
power = 20;
bitRate = 20;
systemLoss = 3;

of

o® o° of o°

mete

deg
deg
deg
deg

o® o of o°

txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency", frequency, "power",power, ...

"BitRate",bitRate, "SystemLoss",systemlLoss)

txSat =
Transmitter with properties:

Name: Satellite Transmitter
ID: 2
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal]
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz
BitRate: 20 Mbps
Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5;
systemLoss = 3;

rxSat = receiver(sat, "Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemper:

"SystemLoss",systemLoss)

rxSat =
Receiver with properties:

Name: Satellite Receiver
ID: 3
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal
SystemLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin

3-75

3 Objects

3-76

RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % met
apertureEfficiency = 0.5;

gaussianAntenna(txSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc, "Name","Ground Station 1");

latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude, "Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; 0; -5];
mountingAngles = [0; 180; 0];
gimbalGsl = gimbal(gsl, "MountingLocation",mountinglLocation, "MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2, "MountingLocation",mountinglLocation, "MountingAngles",mountingAngles);

o° o°

o 3
D

Track the satellite using the gimbals.

pointAt(gimbalGsl,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalGsl, "Name", "Ground Stationn 1 Transmitter","Frequency",frequency,...
"Power",power, "BitRate",bitRate);

o® o o°

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2, "Name","Ground Station 2 Receiver","RequiredEbNo", requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGsl,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Add link analysis to transmitter txGs1.
lnk = link(txGs1l, rxSat,txSat, rxGs2)

lnk =
Link with properties:

Sequence: [8 3 2 9]
LineWidth: 1
LineColor: [0 1 0]

Receiver

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(lnk)
ans=4x8 table
Source Target IntervalNumber Sta
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 1 25-Nov - 2
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 2 25-Nov - 2
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 3 25-Nov - 2
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 4 25-Nov - 2

Visualize the link using the Satellite Scenario Viewer.

play(sc);

4 Satellte SEenand Viewer = o

) .
. Ground Station 1

Ground '-,E".:' 10N

Souroe: K, Maxr, Geollys, Cartheter Geographios, CNIESUrt 05, LISDA, LES(S, AsnoCEHID, M, nd T G35 User Community
| w UTC 5 & . Pl 5 312 T Here 25 7ECH0 1800 83 UTC Mo 26 M
I | | |

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
groundStation |access | link | play | show | hide

Topics
“Model, Visualize, and Analyze Satellite Scenario”

3-77

3 Objects

“Multi-Hop Satellite Communications Link Between Two Ground Stations”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3-78

Gimbal

Gimbal

Gimbal object belonging to satellite scenario

Description

The Gimbal defines a gimbal object belonging to a satellite scenario.

Creation

You can create a Gimbal object using the gimbal object function of the Satellite or
GroundStation.

Properties

Name — Gimbal name
"Gimbal idx" (default) | string scalar | string vector | character vector | cell array of character
vectors

You can set this property only when calling Gimbal. After you call Gimbal, this property is read-only.

Gimbal name, specified as a comma-separated pair consisting of 'Name' and a string scalar, string
vector, character vector or a cell array of character vectors.

» If only one Gimbal is added, specify Name as a string scalar or a character vector.

» If multiple Gimbals are added, specify Name as a string vector or a cell array of character vectors.
The number of elements in the string vector or cell array must be equal to the number of satellites
being added.

In the default value, idx is the count of the Gimbal added by the Gimbal object function. If another
Gimbal of the same name exists, a suffix idx, is added, where idx, is an integer that is incremented
by 1 starting from 1 until the name duplication is resolved.

Data Types: char | string

ID — Gimbal ID assigned by simulator
real positive scalar

This property is set internally by the simulator and is read-only.
Gimbal ID assigned by the simulator, specified as a positive scalar.

MountingLocation — Mounting location with respect to parent
[0; O; 0] (default) | three-element row vector of positive numbers

Mounting location with respect to the parent object, specified as a three-element row vector of
positive numbers in meters. The position vector is specified in the body frame of the input parent.

MountingAngles — Mounting orientation with respect to parent object
[0; O; 0] (default) | three-element row vector of positive numbers

3-79

3 Objects

3-80

Mounting orientation with respect to parent object, specified as a three-element row vector of
positive numbers in degrees. The elements of the vector correspond to yaw, pitch, and roll in that
order. Yaw, pitch, and roll are positive rotations about the parent's z - axis, intermediate y - axis and
intermediate x - axis of the parent.

Example: [0; 30; 60]

ConicalSensors — Conical sensors
row vector of conical sensors

You can set this property only when calling conicalSensor. After you call conicalSensor, this
property is read-only.

Conical sensors attached to the Gimbal, specified as a row vector of conical sensors.

Receivers — Receivers attached to Gimbal
row vector of Receiver objects

You can set this property only when calling receiver. After you call receiver, this property is read-
only.

Receivers attached to the Gimbal, specified as a row vector of Receiver objects.

Transmitters — Transmitters attached to Gimbal
row vector of Transmitter objects

You can set this property only when calling transmitter. After you call transmitter, this property
is read-only.

Transmitters attached to the Gimbal, specified as a row vector of Transmitter objects.

Object Functions

transmitter Add transmitter to satellite scenario
receiver Add receiver to satellite scenario
conicalSensor Add conical sensor to satellite scenario
pointAt Target at which entity must be pointed

gimbalAngles Steering angles of gimbal

Examples

Calculate Maximum Revisit Time of Satellite

Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five
days later. Set the simulation sample time to 60 seconds.

startTime = datetime(2021,6,21,8,55,0);

stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime)

sC =
satelliteScenario with properties:

StartTime: 21-Jun-2021 08:55:00

Gimbal

StopTime: 26-Jun-2021 08:55:00
SampleTime: 60
Viewers: [0x0 matlabshared.satellitescenario.Viewer]
Satellites: [1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared.satellitescenario.GroundStation]
AutoShow: 1

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;

eccentricity = 0;

inclipation = 50;

rightAscension0fAscendingNode = 0;

argumentOfPeriapsis = 0;

trueAnomaly = 50;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscension0OfAscendingNode,
argumentOfPeriapsis, trueAnomaly)

sat =
Satellite with properties:

Name: Satellite 1
ID: 1
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
GroundTrack: [1x1 matlabshared.satellitescenario.GroundTrack]
Orbit: [1x1 matlabshared.satellitescenario.Orbit]
OrbitPropagator: sgp4
MarkerColor: [1 0 0]
MarkerSize: 10
ShowLabel: true
LabelFontColor: [1 0 0]
LabelFontSize: 15

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph", .
"Latitude",42.3001, "Longitude",-71.3504) % degrees

gs =
GroundStation with properties:

Name: Location To Photograph
ID: 2
Latitude: 42.3 degrees
Longitude: -71.35 degrees
Altitude: 0 meters
MinElevationAngle: 0 degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Gimbals: [1x0 matlabshared.satellitescenario.Gimbal]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]
Accesses: [1x0 matlabshared.satellitescenario.Access]
MarkerColor: [0 1 1]

3-81

o°

d° o° o° o°

me’

deq
deq
de
de

3 Objects

3-82

MarkerSize: 10
ShowLabel: true
LabelFontColor: [0 1 1]
LabelFontSize: 15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

gimbal(sat)

«
1l

g:
Gimbal with properties:

Name: Gimbal 3

ID: 3
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
ConicalSensors: [1x0 matlabshared.satellitescenario.ConicalSensor]
Transmitters: [1x0 satcom.satellitescenario.Transmitter]
Receivers: [1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60
degrees.

camSensor = conicalSensor(g, "MaxViewAngle",b60)

camSensor =
ConicalSensor with properties:

Name: Conical sensor 4
ID: 4
MountingLocation: [0; 0; O] meters
MountingAngles: [0; 0; 0] degrees
MaxViewAngle: 60 degrees
Accesses: [1x0 matlabshared.satellitescenario.Access]
FieldOfView: [0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to
the conical sensor.

ac = access(camSensor,gs)

ac =
Access with properties:

Sequence: [4 2]

LinewWidth: 1
LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

Gimbal

VvV =

fieldOfView(camSensor);

Satellte Scenana Viewer

Jun X3 20T 00000 08 UTC

satelliteScenarioViewer(sc);

Jun 4 00-00°00 UTC
|

Sowroe: L, Maxcw, Geol e, Cartheter Geographeos, TR S0t OFF, LSDA, USOGES, Asrol3HI0, W, snd S GRS Uses Communty

S T T 00 00.00 1
|

Determine the intervals during which the camera can see the geographical site.

t = accessIntervals(ac)
t=35x8 table
Source Target IntervalNumber StartTime
"Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00
"Conical sensor 4" "Location To Photograph" 12 22-Jun-2021 17:53:00
"Conical sensor 4" "Location To Photograph" 13 22-Jun-2021 19:55:00
"Conical sensor 4" "Location To Photograph" 14 22-Jun-2021 21:58:00
"Conical sensor 4" "Location To Photograph" 15 23-Jun-2021 10:56:00
sensor 4" "Location To Photograph" 16 23-Jun-2021 12:56:00

"Conical

3-83

3 Objects

Calculate the maximum revisit time in hours.

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(1l:end-1));
maxRevisitTime = max(revisitTimes) % hours

maxRevisitTime = 12.6667
Visualize the revisit times that photographs the location.

play(sc);

. Satellte Scenamd Viewer - o

o [wr, Moxow” ol we, T srtheter Ceeographos., M St 0F LSS, AemolS00, MM, and T CH User Commanty

p Ton 2 P 0008 B UTC Jon 0.0 68 UTC Jeam 6 302 e 0000
! | |

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | satellite | access | groundStation | conicalSensor | transmitter |
receiver

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”

“Satellite Scenario Basics”

3-84

Gimbal

Introduced in R2021a

3-85

3 Objects

FieldOfView

Field of view object belonging to satellite scenario

Description

The FieldOfView object defines a field of view object belonging to a satellite scenario.

Creation

You can create a FieldOfView object using the fieldOfView object function of the
ConicalSensor object.

Properties

LineWidth — Visual width of field of view contour
1 (default) | scalar in the range (0 10]

Visual width of the field of view contour in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of field of view contour
[0 1 0] (default) | RGB triplet | RGB triplet |string scalar of color name | character
vector of color name

Color of field of view contour, specified as an RGB triplet, hexadecimal color code, a color name, or a
short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800"', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '"#FFO000' —

‘green' ‘g’ [0 1 0] '#00FF0O0'

'blue' 'b! [0 0 1] '#000OFF' ——

3-86

FieldOfView

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ ‘m' [1 0 1] '#FFOOFF' I

'yvellow' 'y! [110] '#FFFFOO'

'black’ k! [0 0 0] '#000000" E—

'white' 'w' [11 1] '"#FFFFFF']

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' —
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] '#77AC30" I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Example: 'blue’
Example: [0 0 1]
Example: '#0000FF'

VisibilityMode — Visibility mode of field of view contour
‘inherit' (default) | 'manual’

Visibility mode of the field of view contour, specified as one of these values:

* 'inherit' — Visibility of the graphic matches that of the parent
* 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Object Functions
show Show object in satellite scenario viewer
hide Hides satellite scenario entity from viewer

Examples
Calculate Maximum Revisit Time of Satellite
Create a satellite scenario with a start time of 15-June-2021 8:55:00 AM UTC and a stop time of five

days later. Set the simulation sample time to 60 seconds.

3-87

3 Objects

startTime = datetime(2021,6,21,8,55,0);

stopTime =

sampleTime = 60;

startTime + days(5);

o°

sc = satelliteScenario(startTime,stopTime,sampleTime)

SC =

satelliteScenario with properties:

StartTime:
StopTime:
SampleTime:
Viewers:
Satellites:
GroundStations:
AutoShow:

21-Jun-2021 08:55:
26-Jun-2021 08:55:
60

[0x0 matlabshared.
[1x0 matlabshared.
[1x0 matlabshared.
1

00
00

satellitescenario
satellitescenario
satellitescenario

Add a satellite to the scenario using Keplerian orbital elements.

semiMajorAxis = 7878137;

eccentricity = 0;
inclination = 50;

rightAscension0fAscendingNode = 0;
argumentOfPeriapsis = 0;

trueAnomaly = 50;
sat =

argumentOfPeriapsis, trueAnomaly)

sat =

Satellite with properties:

Name:

ID:
ConicalSensors:
Gimbals:
Transmitters:
Receivers:
Accesses:
GroundTrack:
Orbit:
OrbitPropagator:
MarkerColor:
MarkerSize:
ShowLabel:
LabelFontColor:
LabelFontSize:

Satellite 1

[1 0 0]

[1 0 0]

seconds

.Viewer]
.Satellite]
.GroundStation]

satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode,

matlabshared.satellitescenario.ConicalSensor]
matlabshared.satellitescenario.Gimbal]
satcom.satellitescenario.Transmitter]
satcom.satellitescenario.Receiver]
matlabshared.satellitescenario.Access]
matlabshared.satellitescenario.GroundTrack]
matlabshared.satellitescenario.Orbit]

Add a ground station which represents the location to be photographed, to the scenario.

gs = groundStation(sc,"Name","Location To Photograph",
"Latitude",42.3001, "Longitude",-71.3504)

gs =

GroundStation with properties:

Name: Location To Photograph
ID: 2
Latitude: 42.3 degrees

3-88

% degrees

o°

0° o° o° o°

me-

de
deq
de
deq

FieldOfView

Longitude:
Altitude:
MinElevationAngle:
ConicalSensors:
Gimbals:
Transmitters:
Receivers:
Accesses:
MarkerColor:
MarkerSize:
ShowLabel:
LabelFontColor:
LabelFontSize:

-71.35 degrees

0 meters

0 degrees

[1x0 matlabshared.satellitescenario.ConicalSensor]
[1x0 matlabshared.satellitescenario.Gimbal]
[1x0 satcom.satellitescenario.Transmitter]
[1x0 satcom.satellitescenario.Receiver]
[1x0 matlabshared.satellitescenario.Access]
[0 1 1]

10

true

[0 1 1]

15

Add a gimbal to the satellite. You can steer this gimbal independently of the satellite.

gimbal(sat)

«
Il

g:

Gimbal with properties:

Name:

ID:
MountinglLocation:
MountingAngles:
ConicalSensors:
Transmitters:
Receivers:

Gimbal 3

3

[0; O; O] meters

[0; O; O] degrees

[1x0 matlabshared.satellitescenario.ConicalSensor]
[1x0 satcom.satellitescenario.Transmitter]

[1x0 satcom.satellitescenario.Receiver]

Track the location to be photographed using the gimbal.

pointAt(g,gs);

Add a conical sensor to the gimbal. This sensor represents the camera. Set the field of view to 60

degrees.
camSensor =

camSensor =

conicalSensor(g, "MaxViewAngle",60)

ConicalSensor with properties:

Name:

ID:
MountinglLocation:
MountingAngles:
MaxViewAngle:
Accesses:
FieldOfView:

Conical sensor 4

4

[0; 0; 0] meters

[0; O; O] degrees

60 degrees

[1x0 matlabshared.satellitescenario.Access]

[0x0 matlabshared.satellitescenario.FieldOfView]

Add access analysis between the camera and the location to be photographed. The access is added to

the conical sensor.
acC =

ac =

access(camSensor,gs)

Access with properties:

3-89

3 Objects

Sequence: [4 2]
LineWidth: 1
LineColor: [0.5 0 1]

Visualize the field of view of the camera by using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);
fieldOfView(camSensor);

4 Satellae Seenana Viewer - o

Sooroe: L, Maxw, Ueol 'y, Lartheter Geographees, TR S0 OFF, LISDA, LSO, AsrolBiD, KM, sred S CHY Usas Commmunity

Jun 23 2 0000000 UTC Jon 24 M 00:00:00 UTC s G 203 O 0000 1

Determine the intervals during which the camera can see the geographical site.
t = accessIntervals(ac)

t=35x8 table

Source Target IntervalNumber StartTime
"Conical sensor 4" "Location To Photograph" 1 21-Jun-2021 10:38:00
"Conical sensor 4" "Location To Photograph" 2 21-Jun-2021 12:36:00
"Conical sensor 4" "Location To Photograph" 3 21-Jun-2021 14:37:00
"Conical sensor 4" "Location To Photograph" 4 21-Jun-2021 16:41:00
"Conical sensor 4" "Location To Photograph" 5 21-Jun-2021 18:44:00
"Conical sensor 4" "Location To Photograph" 6 21-Jun-2021 20:46:00
"Conical sensor 4" "Location To Photograph" 7 21-Jun-2021 22:50:00
"Conical sensor 4" "Location To Photograph" 8 22-Jun-2021 09:51:00
"Conical sensor 4" "Location To Photograph" 9 22-Jun-2021 11:46:00
"Conical sensor 4" "Location To Photograph" 10 22-Jun-2021 13:46:00
"Conical sensor 4" "Location To Photograph" 11 22-Jun-2021 15:50:00

3-90

FieldOfView

"Conical sensor 4" "Location To Photograph"
"Conical sensor 4" "Location To Photograph"
"Conical sensor 4" "Location To Photograph"
"Conical sensor 4" "Location To Photograph"

"Conical sensor 4" "Location To Photograph"

Calculate the maximum revisit time in hours.

startTimes = t.StartTime;

endTimes = t.EndTime;

revisitTimes = hours(startTimes(2:end) - endTimes(l:end-1))
maxRevisitTime = max(revisitTimes)

maxRevisitTime = 12.6667
Visualize the revisit times that photographs the location.

play(sc);

4 Satellae Scenans Vieaer

Souroe- [, Mo Geolwe, (st Geographos, CHL Strten 02 LIPS, AarolS0, WM, snd) e TR Uner
Jun 23 BT 00000 8 UITC Jon 4 O 600000 UTC

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | access

12
13
14
15
16

’

% hours

Communty
e 1 2021 O 00 00

22-Jun-2021 17:53:00
22-Jun-2021 19:55:00
22-Jun-2021 21:58:00
23-Jun-2021 10:56:00
23-Jun-2021 12:56:00

3-91

3 Objects

Topics

“Model, Visualize, and Analyze Satellite Scenario”
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3-92

Link

Link

Link analysis object belonging to Transmitter

Description

The Link object defines a link analysis object belonging to Transmitter.

Creation

You can create a Link object using the 1ink object function of the Transmitter or Receiver
objects.

Properties

Sequence — Transmitter or receiver ID
vector of positive numbers

You can set this property only when calling Link. After you call Link, this property is read-only.
Transmitter or receiver ID, specified as a vector of positive numbers.

LineWidth — Visual width of link line
1 (default) | scalar in the range (0 10]

Visual width of link line in pixels, specified as a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LineColor — Color of link line
[0 1 0] (default) | RGB triplet |string scalar of color name | character vector of
color name

Color of the link line, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800"', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

3-93

3 Objects

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '"#FFO000' —

‘green' ‘g’ [0 1 0] '#OOFFOO'

'blue’ ‘b [0 0 1] '#0000FF' ——

‘cyan' ‘c' [0 1 1] '#OOFFFF'

‘magenta’ m' [1 0 1] '"#FFOOFF' I

'yvellow' 'y! [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000' E—

'white' 'w' [111] "#FFFFFF']

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' —
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] '#77AC30" I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Example: 'blue’
Example: [0 0 1]
Example: '#0000FF"

Object Functions

show Show object in satellite scenario viewer

ebno Eb/No at final node of link

linkPercentage Percentage of time when link between first and last node in link analysis is closed
linkStatus Status of link closure between first and last node

linkIntervals Intervals during which link is closed

hide Hides satellite scenario entity from viewer

Examples

Determine Times of Availability for Satellite Link Between Two Ground Stations

Create a satellite scenario object.

3-94

Link

startTime = datetime(2020,11,25,0,0,0);

stopTime = startTime + days(1);
sampleTime = 60;

% seconds

sc = satelliteScenario(startTime,stopTime,sampleTime)

SC =

satelliteScenario with properties:

StartTime: 25-Nov-2020
StopTime: 26-Nov-2020
SampleTime: 60

Viewers: [0x0 matlabshared.satellitescenario.Viewer]

Satellites:

AutoShow:

Add a satellite to the scenario.

semiMajorAxis = 10000000;
eccentricity = 0;

inclination = 60;
rightAscension0fAscendingNode = 0;
argumentOfPeriapsis = 0;
trueAnomaly = 0;

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscension0fAscendingNode, ...

[1x0 matlabshared.satellitescenario.Satellite]
GroundStations: [1x0 matlabshared
1

.satellitescenario.GroundStation]

argumentOfPeriapsis, trueAnomaly, "Name", "Satellite");

Add a transmitter to the satellite.

frequency = 27e9;
power = 20;
bitRate = 20;
systemLoss = 3;

of

o® o° o o°

met

deg
deg
deg
deg

o o o° o°

txSat = transmitter(sat,"Name","Satellite Transmitter","Frequency", frequency, "power", power,...
"BitRate",bitRate, "SystemLoss",systemLoss)

txSat =
Transmitter with properties:

Name: Satellite Transmitter

[1x1 satcom.satellitescenario.GaussianAntenna]

ID: 2
MountingLocation: [Q; 0; O] meters
MountingAngles: [0; 0; 0] degrees
Antenna:
SystemLoss: 3 decibels
Frequency: 2.7e+10 Hertz
BitRate: 20 Mbps

Power: 20 decibel-watts
Links: [1x0 satcom.satellitescenario.Link]

Add a receiver to the satellite.

gainToNoiseTemperatureRatio = 5;
systemLoss = 3;

rxSat = receiver(sat, "Name","Satellite Receiver","GainToNoiseTemperatureRatio",gainToNoiseTemper:

"SystemLoss",systemLoss)

3-95

3 Objects

3-96

rxSat =
Receiver with properties:

Name: Satellite Receiver
ID: 3
MountingLocation: [0; 0; O] meters
MountingAngles: [0; O; 0] degrees
Antenna: [1x1 satcom.satellitescenario.GaussianAntennal
SystemLoss: 3 decibels
GainToNoiseTemperatureRatio: 5 decibels/Kelvin
RequiredEbNo: 10 decibels

Specify the antenna specifications of the repeater.

dishDiameter = 0.5; % met
apertureEfficiency = 0.5;

gaussianAntenna(txSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);
gaussianAntenna(rxSat,"DishDiameter",dishDiameter, "ApertureEfficiency",apertureEfficiency);

Add two ground stations to the scenario.

gsl = groundStation(sc,"Name","Ground Station 1");

latitude = 52.2294963; % degrees
longitude = 0.1487094; % degrees
gs2 = groundStation(sc,latitude,longitude, "Name","Ground Station 2");

Add gimbals to the ground stations. These gimbals enable you to steer the ground station antennas to
track the satellite.

mountingLocation = [0; 0; -5];
mountingAngles = [0; 180; 0];
gimbalGsl = gimbal(gsl, "MountingLocation",mountinglLocation, "MountingAngles",mountingAngles);
gimbalGs2 = gimbal(gs2, "MountingLocation"”,mountinglLocation, "MountingAngles",mountingAngles);

o o°

o 3
D

Track the satellite using the gimbals.

pointAt(gimbalGsl,sat);
pointAt(gimbalGs2,sat);

Add a transmitter to gimbal gimbalGs1.

frequency = 30e9;

power = 40;

bitRate = 20;

txGsl = transmitter(gimbalGsl, "Name", "Ground Stationn 1 Transmitter","Frequency",frequency,...
"Power",power, "BitRate",bitRate);

o® o o°

Add a receiver to gimbal gimbalGs2.

requiredEbNo = 14; % dB
rxGs2 = receiver(gimbalGs2, "Name","Ground Station 2 Receiver","RequiredEbNo", requiredEbNo);

Define the antenna specifications of the ground stations.

dishDiameter = 5; % meters
gaussianAntenna(txGsl,"DishDiameter",dishDiameter);
gaussianAntenna(rxGs2,"DishDiameter",dishDiameter);

Link

Add link analysis to transmitter txGs1.
lnk = link(txGsl, rxSat, txSat, rxGs2)

lnk =
Link with properties:

Sequence: [8 3 2 9]

LinewWidth: 1
LineColor: [0 1 0]

Determine the times when ground station gs1 can send data to ground station gs2 via the satellite.

linkIntervals(1lnk)
ans=4x8 table
Source Target IntervalNumber Sta
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 1 25-Nov - 2(
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 2 25-Nov - 2(
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 3 25-Nov - 2(
"Ground Stationn 1 Transmitter" "Ground Station 2 Receiver" 4 25-Nov - 2(

Visualize the link using the Satellite Scenario Viewer.

play(sc);

4 Satellae Senans Vieser — o

« Ground SBation

. Ground Station 1

Souroe: D, Maow, Geol we, | srtheter Geographeos, TN S0t OFF, LIGDA, LSO, AseoUEH0, BN, snd S GG Uses Communty
| WMMEI‘IT.' My 25 2020 0F 0000 UTC P 35 SO0 12 00 00 UTE My 25 000 150000 LITC Hew 26 103
i ! |

3-97

3 Objects

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | hide | groundStation | transmitter | receiver

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3-98

GroundTrack

GroundTrack

Ground track object belonging to satellite in scenario

Description

The GroundTrack object defines a ground track object belonging to a satellite in a scenario.

Creation

You can create a GroundTrack object using the groundTrack object function of the Satellite
object.

Properties

LeadTime — Period of ground track to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track to be visualized in the satellite scenario viewer, specified as a comma-
separated pair consisting of 'LeadTime' and a real positive scalar in seconds.

TrailTime — Period of ground track history to be visualized
StartTime to StopTime (default) | positive scalar

Period of the ground track history to be visualized in Viewer, specified as a comma-separated pair
consisting of 'TrailTime' and a real positive scalar in seconds.

LineWidth — Visual width of ground track
1 (default) | scalar in the range (0 10]

Visual width of the ground track in pixels, specified as a comma-separated pair consisting of
"LineWidth' and a scalar in the range (0 10].

The line width cannot be thinner than the width of a pixel. If you set the line width to a value that is
less than the width of a pixel on your system, the line displays as one pixel wide.

LeadLineColor — Color of future ground track line
[1 0 1] (default) | RGB triplet | RGB triplet |string scalar of color name | character
vector of color name

Color of the future ground track line, specified as a comma-separated pair consisting of
'LeadLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

3-99

3 Objects

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800"', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '#FFO000 ' —

‘green’ ‘g’ [0 1 0] '#0OFFOO'

"blue'’ ‘b [0 0 1] '#0000FF' —

‘cyan' ‘c' [0 1 1] '#OOFFFF'

'magenta’ 'm' [1 0 1] '#FFOOFF' I

'yellow' 'y! [11 0] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000" —

'white' 'w! [111] '"#FFFFFF' I—

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] "#77AC30' I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#M2142F' I

Example: 'blue’
Example: [0 0 1]

Example: '#0000FF'

TrailLineColor — Color of ground track line history

[1 0.5 0] (default) | RGB triplet | RGB triplet | string scalar of color name | character
vector of color name

Color of the ground track line history, specified as a comma-separated pair consisting of
'TrailLineColor' and an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

3-100

GroundTrack

* An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0, 1]; for example,
[0.4 0.6 0.7].

* A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800"', '#ff8800', '#F80"', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name |Short Name |RGB Triplet Hexadecimal Appearance
Color Code

'red’ ‘r' [1 0 0] '#FFO000' —

‘green’ 'g! [0 1 0] '#00FF00'

"blue’ ‘b [0 0 1] '#OO0OFF' I

‘cyan' ‘c' [0 11] '#OOFFFF'

'magenta’ ‘m' [1 0 1] "#FFOOFF' I

'yvellow' 'y' [110] '"#FFFFOO'

'black’ 'k [0 0 0] '#000000" ——

'white' 'w' [111] '"#FFFFFF' —

'none’ Not Not applicable Not applicable No color

applicable

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many

types of plots

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD' I
[0.8500 0.3250 0.0980] '#D95319' I
[0.9290 0.6940 0.1250] '#EDB120'

[0.4940 0.1840 0.5560] '#7E2F8E' I
[0.4660 0.6740 0.1880] '#77AC30' I
[0.3010 0.7450 0.9330] '#4DBEEE'

[0.6350 0.0780 0.1840] "#A2142F' I

Example: 'blue’

Example: [0

0 1]

Example: '#0000FF'

VisibilityMode — Visibility mode of ground track
‘inherit' (default) | 'manual’

Visibility mode of the ground track, specified as either one of these values:

* 'inherit' — Visibility of the graphic matches that of the parent

3-101

3 Objects

3-102

* 'manual' — Visibility of the graphic is not inherited and is independent of that of the parent

Object Functions
show Show object in satellite scenario viewer
hide

Examples

Add Ground Track to Satellite in Geosynchronous Orbit

Create a satellite scenario object.

startTime = datetime(2020,5,10);

stopTime = startTime + days(5);

sampleTime = 60; % seconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Calculate the semimajor axis of the geosynchronous satellite.

earthAngularVelocity = 0.0000729211585530; % rad/s
orbitalPeriod = 2*pi/earthAngularVelocity; % seconds
earthStandardGravitationalParameter = 398600.4418e9; % m~3/s"2

semiMajorAxis = (earthStandardGravitationalParameter*((orbitalPeriod/(2*pi))~2))"(1/3);
Define the remaining orbital elements of the geosynchronous satellite.

eccentricity = 0;

inclination = 60; % degrees
rightAscensionOfAscendingNode = 0; % degrees
argumentOfPeriapsis = 0; % degrees
trueAnomaly = 0; % degrees

Add the geosynchronous satellite to the scenario.

sat = satellite(sc,semiMajorAxis,eccentricity,inclination, rightAscensionOfAscendingNode, ...
argumentOfPeriapsis, trueAnomaly, "OrbitPropagator", "two-body-keplerian", "Name","GEO Sat")

Visualize the scenario using the Satellite Scenario Viewer.

v = satelliteScenarioViewer(sc);

GroundTrack

& Satellne Scenamnd Viewer = o

-

S0
Wiy 10 030
OO0 LTS

. 4 e

Souroe: e, Maxr, Ciolipe, Carthutsr Geographics, CHI S0kt (85, LSO, LSS, AsrclER0, W, snd S (35 Lser Gommunity
| FMM!_IT{.‘ By 13 2050 &8 Gdotd UTC Ry 14 000 B8 S0 LI
| | |

Add a ground track of the satellite to the visualization and adjust how much of the future and history
of the ground track to display.

leadTime = 2*24*3600; % seconds
trailTime = leadTime;
gt = groundTrack(sat,"LeadTime", leadTime,"TrailTime",trailTime)

gt =
GroundTrack with properties:

LeadTime: 172800
TrailTime: 172800
LineWidth: 1

LeadLineColor: [1 0 1]
TraillLineColor: [1 0.5000 0]
VisibilityMode: 'inherit'

Visualize the satellite movement and its trace on the ground. The satellite covers the area around

Japan during one half of the day and Australia during the other half.
play(sc);

3-103

3 Objects

. Satellte Seenamd Viewer = o

-

S0
bkary 10 220 e i, Maxw, Geol'pe, [srthutsr Geographios, G S0kt O, LISOA, L0, AemCEnD, 1, snd S 035 User Commanty

SO 0400 UTC My 13 3030 &6 0d008 UTC el 14 20 08 80 00 LUTC
uTc 7 UTE y i3 -
| «e P I |

See Also

Objects
satelliteScenario | satelliteScenarioViewer

Functions
show | play | groundStation | access | hide | satellite

Topics
“Model, Visualize, and Analyze Satellite Scenario”

“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021a

3-104

Pattern

Pattern

Radiation pattern visualization

Description

The Pattern object defines a radiation pattern visualization for a transmitter or receiver.

Creation

You can create Pattern objects by using the pattern object function of the Transmitter or
Receiver object.

Properties

Size — Size of radiation pattern plot
1000000 (default) | numeric scalar

Size of the radiation pattern plot, specified as a numeric scalar in meters. This value represents the
distance between the antenna position and the point on the plot with the highest gain.

Data Types: double

Colormap — Colormap for coloring pattern plot
'jet' (default) | predefined colormap name | M-by-3 matrix

Colormap for coloring the pattern plot, specified as a predefined colormap name or an M-by-3 matrix
of red, green, blue (RGB) triplets that define M individual colors. For more information on the
colormap names, see “map”.

Data Types: double | string | char

Transparency — Transparency of pattern plot
0.4 (default) | scalar in the range [0, 1]

Transparency of the pattern plot, specified as a scalar in the range [0, 1]. A value of 0 means the plot
is completely transparent, and a value of 1 means the plot is opaque.
Data Types: double

VisibilityMode — Visibility of graphic relative to its parent
"inherit' (default) | 'manual’

Visibility of the graphic relative to its parent, specified as 'inherit' or 'manual’. This visibility
mode determines the visibility of this graphic in the satelliteScenarioViewer object relative to
its parent graphic. The parent graphic of the Pattern object is its corresponding satellite.

* 'inherit'— Inherit visibility from the parent graphic. The visibility of the graphic matches the
parent visibility.

* 'manual'— Do not inherit visibility from the parent. The visibility of the graphic is independent
of the parent visibility.

3-105

3 Objects

Data Types: char | string

Object Functions
show Show object in satellite scenario viewer
hide Hides satellite scenario entity from viewer

Examples

Visualize Radiation Pattern of Transmitter Antenna on Satellite

Set up the satellite scenario.

startTime = datetime(2021,2,12,13,30,0);

stopTime = startTime + hours(5);

sampleTime = 60; %sseconds
sc = satelliteScenario(startTime,stopTime,sampleTime);

Create a satellite, ground station, transmitter, and receiver.

sat = satellite(sc,1e7,0,0,0,0,0);

gs = groundStation(sc,"Latitude",30,"Longitude",74);
tx = transmitter(sat, "Frequency",b30e9);
rx = receiver(gs);

Visualize the scenario in the satellite scenario viewer.

viewer = satelliteScenarioViewer(sc);

4 Satellde S enans Viewer -]

o

wa ¥

] b
£, M liirtou 85, LESEANLISCRS, R0, MM, mrdi e (R Lbr Coamrmenity

Fob 12 021 1400 00 UTC Feb 13 2071 16:00.08 UTC Feb 12 2071 1500,00 UTC

' | o |

3-106

Pattern

Plot the radiation pattern of the transmitter antenna.

pat = pattern(tx);

L

Feb 13 2 16:08-08 UTC
|

Point the satellite at the ground station. The pattern rotates to reflect the new orientation of the
antenna.

pointAt(sat,gs);

3-107

3 Objects

| 4 Sstelide Scenana Viewss - o

DRI, PO, ! e O

Increase the visual size of the radiation pattern.

pat.Size = 2000000;
pat.Colormap = "parula";

3-108

Pattern

. Satellne SCenansd Viewer

CURIL, W, s s G5 L Commnity
Feb 17 21 160800 UTC Febs 1 1 150008 UTC
|

See Also

Objects
Receiver | Transmitter | satelliteScenarioViewer | satelliteScenario

Functions
show | hide | receiver | transmitter

Topics
“Satellite Scenario Key Concepts”
“Satellite Scenario Basics”

Introduced in R2021b

3-109

3 Objects

3-110

dvbrcs2RecoveryConfig

Receiver configuration parameters for DVB-RCS2

Description
The dvbrcs2RecoveryConfig object creates a Digital Video Broadcasting Second Generation

Return Channel over Satellite (DVB-RCS2) recovery configuration object. Recover the frame protocol
data unit (PDU) from the received DVB-RCS2 waveform by using object properties.

Creation

Syntax

cfgrecs2
cfgrecs2

dvbrcs2RecoveryConfig
dvbrcs2RecoveryConfig(Name,Value)

Description
cfgrcs2 = dvbrcs2RecoveryConfig creates a default DVB-RCS2 recovery configuration object.

cfgrcs2 = dvbrcs2RecoveryConfig(Name,Value) sets “Properties” on page 3-110 using one or
more name-value pairs. Enclose each property name in quotes. For example,
dvbrcs2RecoveryConfig('IsCustomWaveform', true) recovers a custom DVB-RCS2 waveform
with the specified property values.

Properties

TransmissionFormat — Transmission format
"TC-LM" (default) | "SS-TC-LM"

Transmission format, specified as one of these values.

e "TC-LM" — Turbo codes with linear modulation (TC-LM)
e "SS-TC-LM" — Spread spectrum turbo codes with linear modulation (SS-TC-LM)

Data Types: char | string

ContentType — Frame PDU burst content type
"traffic" (default) | "logon" | "control"

Frame protocol data unit (PDU) burst content type, specified as "traffic", "logon", or
"control".

Data Types: char | string

IsCustomWaveform — Custom waveform indicator
0 or false (default) | 1 or true

dvbrcs2RecoveryConfig

Custom waveform indicator, specified as one of these values.

* 0 (false) — Use this option to demodulate the complex in-phase quadrature (IQ) samples from a
standard-defined reference waveform.

* 1 (true) — Use this option to demodulate the complex IQ samples from a custom waveform.
Data Types: logical

WaveformID — Reference waveform ID
1 (default) | positive integer

Reference waveform ID, specified as one of these options.

* Integerin the range [1, 22] or [32, 49] — Use this option when you set the TransmissionFormat
property to "TC-LM".

* Integer in the range [1, 19] — Use this option when you set the TransmissionFormat property
to "SS-TC-LM".

Based on the values set for TransmissionFormat and WaveformID properties, this object considers
the receiver parameters according to ETSI EN 301 545-2 Annex A Table A-1 and A-2 [1].

Dependencies

To enable this property, set the IsCustomWaveform property to false.
Data Types: double | unit8

SpreadingFactor — Spreading factor
2 (default) | integer in the range [2, 16]

Spreading factor, specified as an integer in the range [2, 16].

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.

Data Types: double

BurstLength — Burst length
256 (default) | integer in the range [7, 25,233,405]

Burst length, specified as an integer in the range [7, 25,233,405]. This length includes the preamble,
postamble, and pilot sum, in addition to the payload symbols.

When you set the TransmissionFormat property to "TC-LM", the unit of burst length is symbols.
When you set the TransmissionFormat property to "SS-TC-LM", the unit of burst length is chips.

Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: double

MappingScheme — Mapping scheme
"pi/2-BPSK" (default) | "QPSK" | "8PSK" | "16QAM"

Mapping scheme, specified as one of these values.

3-111

3 Objects

* "pi/2-BPSK"
. "QPSK"

. "8PSK"

. "16QAM"

Dependencies

To enable this property, set the TransmissionFormat property to "TC-LM" and the
IsCustomWaveform property to true.

Note When you set the TransmissionFormat property to "SS-TC-LM", the only valid value of
MappingScheme is "pi/2-BPSK".

Data Types: char | string

CodeRate — Code rate
"1/3" (default) | "1/2" | "2/3" | "3/4" | "4/5" | "5/6" | "6/7" | "7/8"

Code rate, specified as one of these values.

o« "2/3","3/4","4/5","5/6", "6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "8PSK".

« "3/4","4/5","5/6","6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "16QAM".

All code rates are applicable if MappingScheme property is set to "pi/2-BPSK" or "QPSK".
Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: char | string

PermutationParameters — Permutation control parameters
[9 0 0 0 O] (default) | vector

Permutation control parameters that the dvbrcs2RecoveryConfig uses to generate turbo encoder
interleaver indices, specified as a five-element vector in order: P, Q,, Q;, Q,, and Q5. P must be in the
range [9, 255], and Q,, Q,, Q,, and Q; must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be co-prime to
PayloadLengthInBytes*4.

Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: double

PreambleLength — Preamble length
8 (default) | integer in the range [0, 255]

Preamble length, specified as an integer in the range [0, 255].

3-112

dvbrcs2RecoveryConfig

When you set the TransmissionFormat property to "TC-LM", the unit of preamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of preamble
length is chips.

A preamble of this specified length is prefixed to the payload symbols.
Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: double

PostambleLength — Postamble length
8 (default) | integer in the range [0, 255]

Postamble length, specified as an integer in the range [0, 255].

When you set the TransmissionFormat property to "TC-LM", the unit of postamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of postamble
length is chips.

A postamble of this specified length is suffixed to the payload symbols in the burst sequence.
Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: double

PilotPeriod — Pilot period
0 (default) | integer in the range [0, 4095]

Pilot period, specified as an integer in the range [0, 4095]. A value of 0 indicates no pilots are
inserted.

When you set the TransmissionFormat property to "TC-LM", the unit of pilot period is symbols.
When you set the TransmissionFormat property to "SS-TC-LM", the unit of pilot period is chips.

The pilot period represents the length of the sequence from first symbol of a pilot block to the first
symbol of the next pilot block in symbols or chips.

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PilotBlockLength — Pilot block length
1 (default) | integer in the range [1, 255]

Pilot block length, specified as an integer in the range [1, 255].

After every PilotPeriod symbols or chips, a pilot block of this specified length is detected, which
must be removed to recover the payload symbols.

Dependencies

To enable this property, set the IsCustomWaveform property to true and PilotPeriod property to
a positive integer.

3-113

3 Objects

3-114

Data Types: double

PilotSum — Total pilot symbols or chips in received waveform
0 (default) | nonnegative integer

Total pilot symbols or chips in the received waveform, specified as one of these options.

* Integer in the range [0, 255] — Use this option when you set the TransmissionFormat property
to "TC-LM".

* Integer in the range [0, 65,535] — Use this option when you set the TransmissionFormat
property to "SS-TC-LM".

When you set the TransmissionFormat property to "TC-LM", the unit of pilot sum is symbols.

When you set the TransmissionFormat property to "SS-TC-LM", the unit of pilot sum is chips.

Dependencies

To enable this property, set the IsCustomWaveform property to true and PilotPeriod property to

a positive integer.

Data Types: double

ScramblingPolynomial — Scrambling polynomial
16-bit zero vector (default) | 16-bit vector of binary values | numeric vector

Scrambling polynomial, specified as one of these options.

» 16-bit vector of binary values from the most significant bit (MSB), z'5, to least significant bit
(LSB), z!. Each element of this vector corresponds to the coefficient of z and its exponent,
specified from MSB to LSB. For details on the binary representation, see ETSI EN 301 545-2
Section 7.3.7.1.5.

* Numeric vector containing the exponents of z for nonzero terms of the polynomial in descending
order.

The scrambling polynomial determines the shift register feedback connection to generate the
spreading sequence.

The coefficient of 2° is always 1.

The default value of this scrambling polynomial indicates the default scrambling sequence provided
in the standard. When you set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to false, the default scrambling sequence is used to descramble the
received reference waveform.

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.

Data Types: double | logical

ScramblingInitialConditions — Scrambling initial conditions
[111111111111111 1] (default)]|1|16-bitvector of binary values

Scrambling initial conditions of the shift register, specified as one of these options.

dvbrcs2RecoveryConfig

* 1 — Use this option to set the initial condition of each cell of the shift register to this value.

 16-bit vector of binary values from the MSB (2'6) to LSB (2!) — Use this option to set the initial
condition of each cell of the shift register to the corresponding element in this vector.

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
ScramblingPolynomial property to a value other than the default value.

Data Types: double | logical

NumDecodingIterations — Number of decoding iterations
8 (default) | positive integer

Number of decoding iterations of the DVB-RCS2 turbo decoder, specified as a positive integer.

Data Types: double

PayloadLengthInBytes — Payload length in bytes
10 (default) | positive integer

This property is read-only.

Payload length in bytes, retuned as a positive integer. This length represents the DVB-RCS2 turbo
decoder output length.

Use this property output to choose a valid value for the first element of PermutationParameters
property (that is, P).

PayloadLengthInBytes*4 and P must be co-primes.
Data Types: double

Object Functions

Specific to This Object
dvbrcs2BitRecover Recover bits for DVB-RCS2 waveform

Examples

Create DVB-RCS2 Receiver Object
Create a DVB-RCS2 recovery configuration object.

Create and then set the properties of the object.

cfgrcs2 = dvbrcs2RecoveryConfig;
cfgrcs2.TransmissionFormat = "SS-TC-LM";
cfgrcs2.ContentType = "control";
cfgrcs2.WaveformID = 20;
cfgrcs2.NumDecodingIterations = 6;

Display the properties of the DVB-RCS2 object.

3-115

3 Objects

3-116

disp(cfgrcs2)
dvbrcs2RecoveryConfig with properties:

TransmissionFormat: "SS-TC-LM"

ContentType: "control"
IsCustomWaveform: 0
WaveformID: 20

Coding and Modulation:
NumDecodingIterations: 6

Unique Word:
No properties.

Read-only:
No properties.

Recover PDU from DVB-RCS2 Reference Waveform
Recover the frame PDU for a DVB-RCS2 reference waveform.

Set the properties of a DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.TransmissionFormat = "SS-TC-LM";
wg.WaveformID = 7;
wg.SamplesPerSymbol = 2;

Generate a frame PDU.
framePDU = randi([0 1],wg.FramePDULength,1);
Generate the DVB-RCS2-based burst symbols.

txWaveform = wg(framePDU) ;

Add additive white Gaussian noise (AWGN) to the generated waveform.

sps = wg.SamplesPerSymbol;

EsNodB = 1;

snrdB = EsNodB - 10*10gl0(sps);

rxIn = awgn(txWaveform,snrdB, "measured");

Create and then configure the DVB-RCS2 recovery configuration object.

cfg = dvbrcs2RecoveryConfig;
cfg.TransmissionFormat = wg.TransmissionFormat;
cfg.WaveformID = wg.WaveformID;

Create a raised cosine receiver filter.

rxFilter = comm.RaisedCosineReceiveFilter(
'RolloffFactor',0.2, ...
"InputSamplesPerSymbol', sps,
'DecimationFactor',sps);
span = rxFilter.FilterSpanInSymbols;

dvbrcs2RecoveryConfig

Apply matched filtering and remove the filter delay.
filtOut = rxFilter([rxIn;

complex(zeros(span/2*sps,1))1);
rxSymb = filtOut(span+l:end);

Recover user packets. Display the frame PDU cyclic redundancy check (CRC) status and the numbers
of bit errors.

[rxOut,pduErr] = dvbrcs2BitRecover(rxSymb,cfg,10”(-EsNodB/10));
fprintf("Erroneous frame PDU = %d\n", pduErr)

Erroneous frame PDU = 0
fprintf("Number of bit errors = %d\n", sum(framePDU~=rx0ut))

Number of bit errors = 0

References
[1] ETSI Standard EN 301 545-2 V1.2.1(2014-11). Digital Video Broadcasting (DVB); Second

Generation Interactive Satellite Systems (DVB-RCSZ2); Part 2: Lower Layers for Satellite
Standard.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
dvbrcs2BitRecover | dvbrcs2TurboDecode

Objects
dvbrcs2WaveformGenerator

Introduced in R2021b

3-117

System Objects

4 System Objects

4-2

dvbs2WaveformGenerator

Generate DVB-S2 waveform

Description

The dvbs2WaveformGenerator System object generates a Digital Video Broadcasting Satellite
Second Generation (DVB-S2) time-domain waveform consisting of a single or multiple physical layer
frames. The object implements the waveform generation aspects of ETSI EN 302 307-1 V1.4.1
(2014-11) [1].

To generate a DVB-S2 waveform:

1 Create the dvbs2WaveformGenerator object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

s2waveGen = dvbs2WaveformGenerator

s2waveGen = dvbs2WaveformGenerator (Name,Value)
Description

s2waveGen = dvbs2WaveformGenerator creates a default DVB-S2 waveform generator System
object.

s2waveGen = dvbs2WaveformGenerator(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in quotes. For example,
dvbs2WaveformGenerator('NumInputStreams',4, 'UPL',100) specifies four input streams,
each with a user packet length of 100 bits.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

StreamFormat — Input stream format
"TS" (default) | "GS"

Input stream format, specified as one of these values.

dvbs2WaveformGenerator

* "TS" — For transport stream format
¢ "GS" — For generic stream format

Data Types: char | string

NumInputStreams — Number of input streams
1 (default) | integer in the range [1, 256]

Number of input streams, specified as an integer in the range [1, 256].

Data Types: double

UPL — User packet length
0 (default) | nonnegative integer | vector of nonnegative integers

User packet (UP) length in bits, specified as one of these options.

* Nonnegative integer — Use this option with single-input and multi-input streams. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be equal to
the integer value of the UPL property.

* Vector of nonnegative integers — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be the size of
the corresponding element in this vector. The length of this vector must be equal to
NumInputStreams.

Note When you specify UPL as a multi-input stream, all UPs must be either packetized or in a
continuous stream. Mixing stream types is not supported.

The maximum value of UPL as an integer scalar or an integer element in the row vector must be less
than or equal to the corresponding DFL property value.

For a generic continuous stream, set UPL to 0.
Dependencies

To enable this property, set the StreamFormat property to "GS". If you set the StreamFormat
property to "TS", the UPL is fixed to 1504 bits.

Data Types: double

FECFrame — FEC frame format
"normal" (default) | "short"

Forward error correction (FEC) frame format, specified as one of these two options.

* "normal" — Sets the low density parity-check (LDPC) codeword length to 64,800 bits
* "short" — Sets the LDPC codeword length to 16,200 bits

Tunable: Yes

Data Types: char | string

MODCOD — Modulation scheme and FEC rate
1 (default) | integer in the range [1, 28] | vector of integers in the range [1, 28]

4-3

4 System Objects

4-4

Modulation scheme and FEC rate for input transmission, specified as one of these options, as defined
in ETSI EN 302 307-1 Section 5.5.2.2 Table 12 [1].

* Integer in the range [1, 28] — Use this option with single-input and multi-input streams. If you set
the NumInputStreams property to a value greater than 1, each stream has the same modulation
scheme and coding rate.

* Vector of integers in the range [1, 28] — Use this option with multi-input streams only. If you set
the NumInputStreams property to a value greater than 1, each input stream has a modulation
scheme and coding rate equal to the corresponding element in this vector. The length of this
vector must be equal to NumInputStreams.

Note MODCOD values 11, 17, 23, and 28 are not valid when you set the FECFrame property to
"short" (as specified in ETSI EN 302 307-1 Section 5.3 Table 5b [1]).

Tunable: Yes

Data Types: double

DFL — Data field length
15,928 (default) | integer in the range [1, (Kzcy—80)] | vector of integers in the range [1, (Kgcy—80)]

Data field (DF) length in bits, specified as one of these options. Kgcy is the uncoded BCH block
length, as specified in ETSI EN 302 307-1 Section 5.3 Table 5a and 5b [1].

* Integer in the range [1, (Kgcy—80)] — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, the length of the DF in
baseband frame of each stream is the same value.

* Vector of integers in the range [1, (Kzcy—80)] — Use this option with multi-input streams only. If
you set the NumInputStreams property to a value greater than 1, the length of the data field in
the baseband frame of each stream must be the size of the corresponding element in this vector.
The length of this vector must be equal to NumInputStreams.

Tunable: Yes

Data Types: double

ScalingMethod — Constellation amplitude scaling method
"outer radius as 1" (default) | "unit average power"

Constellation amplitude scaling method, specified as "outer radius as 1" or "unit average
power".

Dependencies

To enable this property, set the MODCOD property to a value in the range [18, 28], which indicates only
16APSK and 32APSK modulation schemes.

Data Types: char | string

HasPilots — Pilot block indication
0 or false (default) | 1 or true | vector of Logical values

Pilot block indication, specified as a logical value of ® (false), 1 (true), or a vector of Logical
values. Set this value to 1 (true) to indicate pilots are inserted in the physical layer frame.

dvbs2WaveformGenerator

If you set the NumInputStreams property to a value greater than 1, you can configure pilots for each
stream by specifying this property as a vector. The length of this vector must be equal to
NumInputStreams.

Tunable: Yes

Data Types: Llogical

RolloffFactor — Transmit filter roll-off factor
0.35 (default) |0.25]0.2

Transmit filter roll-off factor for baseband pulse shaping, specified as 0.35, 0.25, or 0. 2.
Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the raised cosine filter is truncated to a length that spans the number
of symbols specified in this property.

Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Data Types: double

ISSYI — Input stream synchronization indicator
0 or false (default) | 1 or true

Input stream synchronization (ISSY) indicator, specified as a logical value of 0 (false) or 1 (true).
To indicate that input stream synchronization is used, set this value to 1 (true).

Dependencies

To enable this property, set the NumInputStreams property to a value greater than 1 and set the
UPL property to a nonzero value.
Data Types: logical

ISCRFormat — Input stream clock reference format
"short" (default) | "long"

Input stream clock reference format, specified as one of these options.

* "short" — Indicates the length of ISSY as 2 bytes
* "long" — Indicates the length of ISSY as 3 bytes
When you set the StreamFormat property to "GS", NumInputStreams property to a value greater

than 1, UPL property to a nonzero value, and ISSYI to 1 (true), only the "short" option of this
ISCRFormat property is applicable.

4 System Objects

4-6

Dependencies

To enable this property, set the StreamFormat property to "TS", the NumInputStreams property to
a value greater than 1, and the ISSYI property to 1 (true).

Data Types: char | string

MinNumPackets — Minimum number of packets required to create DF
integer in the range [1, 58,112] | row vector of integers

This property is read-only.
Minimum number of packets required to create a DFE, returned as one of these options.

* Integer in the range [1, 58,112] — This option applies with single-input streams only.

* Row vector of integers in the range [1, 58,112] — This option applies with multi-input streams
only. If you set the NumInputStreams property to a value greater than 1, the minimum number of
packets required for each stream is equal to the corresponding element in this vector. The length
of this vector must be equal to NumInputStreams.

The value of MinNumPackets is computed based of values of DFL and UPL properties.

Dependencies

To enable this property, set the UPL property to a nonzero value.

Data Types: double
Usage

Syntax
txWaveform = s2waveGen(data)
Description

txWaveform = s2waveGen(data) generates a DVB-S2 time-domain waveform from the input
information bits.

Input Arguments

data — Input information bits
binary-valued column vector | cell array of binary-valued column vectors

Input information bits, specified as one of these options. Each element of the column vector or cell
array can be of data type double, int8, or logical.
* Binary-valued column vector — Use this option with single-input streams.

* Cell array of binary-valued column vectors — Use this option with multi-input streams. Each
element of the array represents the corresponding input stream. The length of the cell array must
be equal to the value of the NumInputStreams property.

Input data, either as a single-input or multi-input stream, must be input in one of these forms.

dvbs2WaveformGenerator

* Packetized stream — The number of packets in each stream must be an integer multiple of the
MinNumPackets property.

For a packetized stream, an 8-bit sync field must be included at the beginning of each packet. The
combined length of a packet and its sync bits must be equal to the corresponding value of the UPL
property.

* Continuous stream — The number of bits for each stream must be an integer multiple of the DFL
property.

Note When you set the StreamFormat property to "TS", the sync byte is fixed as 47 hex.

Data Types: double | int8 | logical | cell
Output Arguments

txWaveform — Generated time-domain DVB-S2 waveform
column vector

Generated time-domain DVB-S2 waveform, returned as a column vector. The waveform is generated
in the form of complex in-phase quadrature (IQ) samples and can consist of a single physical layer
frame or multiple physical layer frames.

When you set the NumInputStreams property to a value greater than 1, the data fields generated
from different input streams are merged using the round-robin technique.

Data Types: double

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbs2WaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

isLocked Determine if System object is in use

reset Reset internal states of System object

Examples

4 System Objects

Generate DVB-S2 Waveform for Single-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation (DVB-S2) time-domain waveform
for a single-input transport stream (TS) with a single physical layer (PL) frame per stream. Visualize
the waveform using constellation plots and signal spectrum.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file'")
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 1;

Create a DVB-S2 System object. Specify the modulation scheme and FEC rate (MODCOD) and data
field length (DFL).

s2WaveGen = dvbs2WaveformGenerator;

s2WaveGen.MODCOD = 21; % 16APSK 5/6

s2WaveGen.DFL = 39690;

s2WaveGen.HasPilots = true; % Pilot insertion indication
disp(s2WaveGen)

dvbs2WaveformGenerator with properties:

StreamFormat: "TS"
NumInputStreams: 1
FECFrame: "normal"
MODCOD: 21
DFL: 39690
ScalingMethod: "outer radius as 1"
HasPilots: 1
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 4

Show all properties

Create a bit vector of information bits, data, of concatenated TS user packets.

syncBits = [0 1 0 0 0611 1]"; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2WaveGen.MinNumPackets*numFrames;

txRawPkts = randi([0 1],pktLen,numPkts);

txPkts = [repmat(syncBits,1,numPkts); txRawPkts];

data = txPkts(:);

Generate a DVB-S2 time-domain waveform using the information bits, data.

txWaveform = s2WaveGen(data);

4-8

dvbs2WaveformGenerator

Visualize the constellation plot for the generated DVB-S2 time-domain waveform by creating a
comm.ConstellationDiagram System object.

sps = s2WaveGen.SamplesPerSymbol;

constel = comm.ConstellationDiagram('ColorFading',true,
'ShowTrajectory',0, ...
'SamplesPerSymbol', sps,
'ShowReferenceConstellation', false,
'XLimits',[-0.5 0.5], 'YLimits',[-0.5 0.5]1);

plHeaderLen = 90*sps; % PL header length
constel (txWaveform(plHeaderLen+l:end));
release(constel);

4-9

https://www.mathworks.com/help/comm/ref/comm.constellationdiagram-system-object.html

4 System Objects

4-10

£ = | =] || &3

File Tools View Help N

@-a Q- 6- 8 5

i

L

Amplitude

e

|
=
et
jun]
e
E=)
o
=.
&)

0

"

In-phase Amplitude

Stopped Frame=1

Display the frequency spectrum of the generated DVB-S2 time-domain waveform by creating a
dsp.SpectrumAnalyzer System object.

BW = 36€6; % Typical satellite channel bandwidth
Fsym = BW/(1+s2WaveGen.RolloffFactor);

Fsamp = Fsym*sps;

scope = dsp.SpectrumAnalyzer('SampleRate',Fsamp);
scope(txWaveform)

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

dvbs2WaveformGenerator

I

ile Tools Yiew Playback Help

BESIHIE- P [Fe

&

-10]
Frequency (MHz)
Processing REW=104.167 kHz | Sample rate=106.67 MHz T=0

Generate DVB-S2 Waveform for Multi-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation (DVB-S2) time-domain waveform
for a multi-input generic stream (GS) with multiple physical layer (PL) frames per stream.

This example requires MAT-files with LDPC parity matrices. If they are not available on the path,
execute the following commands to download and unzip the MAT-files.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file")
if ~exist('s2xLDPCParityMatrices.zip', 'file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.
numFrames = 3;

Create a DVB-S2 System object with variable coding and modulation configuration for a multi-input
GS. Specify the modulation scheme and FEC rate (MODCOD) and data field length (DFL).

4-11

4 System Objects

s2WaveGen = dvbs2WaveformGenerator;
s2WaveGen.StreamFormat = "GS";
s2WaveGen.NumInputStreams = 2;
s2WaveGen.MODCOD = [6 24];
s2WaveGen.DFL = [42960 48328];
s2WaveGen.HasPilots = true;
s2WaveGen.SamplesPerSymbol = 10;
disp(s2WaveGen)

% QPSK 2/3 and 32APSK 3/4

dvbs2WaveformGenerator with properties:

StreamFormat: "GS"
NumInputStreams: 2
UPL: ©
FECFrame: "normal"
MODCOD: [6 24]
DFL: [42960 48328]
ScalingMethod: "outer radius as 1"
HasPilots: 1
RolloffFactor: 0.3500

4-12

FilterSpanInSymbols: 10
SamplesPerSymbol: 10

Create a bit vector of input information bits for each GS user packet.
data = cell(s2WaveGen.NumInputStreams,1);
for i = 1:s2WaveGen.NumInputStreams
data{i} = randi([0 1],s2WaveGen.DFL(i)*numFrames,1, 'int8');
end
Generate the DVB-S2 time-domain waveform with the input information bits.

txWaveform = s2WaveGen(data);

References

[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

» For all properties that support string and cell array input, code generation is only supported with
cell array input.

* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

dvbs2WaveformGenerator

See Also

Functions
dvbs2BitRecover

Objects
dvbs2xWaveformGenerator

Introduced in R2021a

4-13

4 System Objects

4-14

dvbs2xWaveformGenerator

Generate DVB-S2X waveform

Description

The dvbs2xWaveformGenerator System object generates a Digital Video Broadcasting Satellite
Second Generation extended (DVB-S2X) time-domain waveform consisting of a single or multiple
physical layer (PL) frames. The object implements the waveform generation aspects of ETSI EN 302
307-2 V1.1.1 (2015-11) [2].

To generate a DVB-S2X waveform:

1 Create the dvbs2xWaveformGenerator object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

s2xWaveGen = dvbs2xWaveformGenerator

s2xWaveGen = dvbs2xWaveformGenerator(Name,Value)
Description

s2xWaveGen = dvbs2xWaveformGenerator creates a default DVB-S2X waveform generator
System object.

s2xWaveGen = dvbs2xWaveformGenerator(Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in quotes. For example,
dvbs2xWaveformGenerator('NumInputStreams',4, 'UPL',100) specifies four input streams,
each with a user packet length of 100 bits.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

StreamFormat — Input stream format
"TS" (default) | "GS"

Input stream format, specified as one of these values.

dvbs2xWaveformGenerator

* "TS" — For transport stream format
¢ "GS" — For generic stream format

Data Types: char | string

HasTimeSlicing — Time slicing indicator
0 or false (default) | 1 or true

Time slicing indicator, specified as a logical value of 0 (false) or 1 (true). To indicate that time
slicing transmission format is used, set this value to 1 (true).

If you set this property to 1 (true), you can set the NumInputStreams property to a maximum value
of 8.

Data Types: logical

NumInputStreams — Number of input streams
1 (default) | integer in the range [1, 256]

Number of input streams, specified as an integer in the range [1, 256].

When you set the HasTImeSlicing property to true, NumInputStreams property can be specified
to a maximum value of 8.

Data Types: double

UPL — User packet length
0 (default) | nonnegative integer | vector of nonnegative integers

User packet (UP) length in bits, specified as one of these options.

* Nonnegative integer — Use this option with single-input and multi-input streams. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be equal to
the integer value of the UPL property.

* Vector of nonnegative integers — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, the UP in each stream must be the size of
the corresponding element in this vector. The length of this vector must be equal to
NumInputStreams.

Note When you specify UPL as a multi-input stream, all UPs must be either packetized or in a
continuous stream. Mixing stream types is not supported.

The maximum value of UPL as an integer scalar or an integer element in the row vector must be less
than or equal to the corresponding DFL property value.

For a generic continuous stream, set UPL to 0.

Dependencies

To enable this property, set the StreamFormat property to "GS". If you set the StreamFormat
property to "TS", the UPL is fixed to 1504 bits.

Data Types: double

PLSDecimalCode — PL signalling code information
132 (default) | integer in the range [4, 249] | vector of integers in the range [4, 249]

4-15

4 System Objects

4-16

PL signalling code information, in decimal format, specified as one of these options (as described in
ETSI EN 302 307-1 Section 5.5.2.2 [1] and ETSI EN 302 307-2 Section 5.5.2.2 Table 17a [2]).

* Integer in the range [4, 249] — Use this option with single-input and multi-input streams. If you
set the NumInputStreams property to a value greater than 1, each stream has the same
modulation scheme and coding rate.

* Vector of integers in the range [4, 249] — Use this option with multi-input streams only. If you set
the NumInputStreams property to a value greater than 1, each stream has a modulation scheme
and coding rate equal to the corresponding element in this vector. The length of this vector must
be equal to NumInputStreams.

All odd integer values are considered to include pilots in PL frames.

Note Few PLSDecimalCode values are invalid in this specified value range. Invalid values include
{46, 47, 70, 71, 94, 95, 114, 128, 130, 176, 177, 188, 189, 192, 193, 196, and 197}.

To calculate the PLSDecimalCode property value for a DVB-S2X system configuration, use this
formula.

MODCOD*4 + (0 - for normal FECFrame/1 - for short FECFrame)*2 + (0 - if HasPilots property value
is false/l - if HasPilots property value is true)

For example, if MODCOD = 18 (16APSK 2/3) with short FEC frame and pilots disabled, the value of
PLSDecimalCode calculated by using this formula is:

PLSDecimalCode =18*4 + 1*2 + 0 = 74

Note For very low signal to noise ratio (VL-SNR) frames, you must set the PLSDecimalCode
property to either 129 or 131, which indicates the VL-SNR set 1 or 2, respectively.

VL-SNR frames must not be combined with regular frames.

Tunable: Yes

Data Types: double

CanonicalMODCODName — Canonical modulation scheme and code rate name
"QPSK 2/9" (default) | character vector | string scalar | cell array | string array

Canonical modulation scheme and code rate name for VL-SNR frame transmission, specified as one of
these options (as described in ETSI EN 302 307-2 Section 5.5.2.2 Table 18a [2]).

* Character vector or string scalar — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, each stream has the same
modulation scheme and coding rate.

» Cell array or string array — Use this option with multi-input streams only. If you set the
NumInputStreams property to a value greater than 1, each input stream has a modulation
scheme and coding rate equal to the corresponding value in this array. The length of this array
must be equal to NumInputStreams.

Valid CanonicalMODCODName values include these options.

dvbs2xWaveformGenerator

+ "QPSK 2/9", "BPSK 1/5", "BPSK 11/45", "BPSK-S 1/5", "BPSK-S 11/45", and "BPSK
1/3" — Applicable for VL-SNR set 1

« "BPSK 1/5", "BPSK 4/15", and "BPSK 1/3" — Applicable for VL-SNR set 2

Tunable: Yes

Dependencies

To enable this property, set the PLSDecimalCode property to either 129 (for VL-SNR set 1) or 131
(for VL-SNR set 2). This property applies for only VL-SNR frame transmissions.
Data Types: char | string

DFL — Data field length
18,448 (default) | integer in the range [1, (Kzcy—80)] | vector of integers in the range [1, (Kgcy—80)]

Data field (DF) length in bits, specified as one of these options. Kgcy is the uncoded BCH block
length, as specified in ETSI EN 302 307-1 Section 5.3 Table 5a and 5b [1].

» Integer in the range [1, (Kzcy—80)] — Use this option with single-input and multi-input streams. If
you set the NumInputStreams property to a value greater than 1, the length of the DF in
baseband frame of each stream is the same value.

* Vector of integers in the range [1, (Kzcy—80)] — Use this option with multi-input streams only. If
you set the NumInputStreams property to a value greater than 1, the length of the data field in
the baseband frame of each stream must be the size of the corresponding element in this vector.
The length of this vector must be equal to NumInputStreams.

Tunable: Yes

Data Types: double

ScalingMethod — Constellation amplitude scaling method
"outer radius as 1" (default) | "unit average power"

Constellation amplitude scaling method, specified as "outer radius as 1" or "unit average
power".

Dependencies

To enable this property, set the PLSDecimalCode property to a value corresponding to APSK
modulation, with the following as exception: {164, 165, 158, 159, 206, 207, 212, and 213}. The other
exceptions are QPSK and 8 PSK values: {4 to 69, inclusive; 129; 131; 132 to 137, inclusive; 142 to
147, inclusive; 216 to 235, inclusive}.

Data Types: char | string

PLScramblingIndex — PL scrambling sequence index
integer in the range [0, 7] | vector of integers in the range [0, 7]

PL scrambling sequence index, specified as one of these options (as described in ETSI EN 302 307-2
Section 5.5.4 Table 19e [2]).

» Integer in the range [0, 7] — Use this option with single-input and multi-input streams.

If you set the NumInputStreams property to a value greater than 1, each stream has the same
value of PL scrambling index.

4-17

4 System Objects

4-18

* Vector of integers in the range [0, 7] — Use this option when you set the HasTimeSlicing
property to true for multi-input streams.

If you set the NumInputStreams property to a value greater than 1, the PL scrambling index
value of each stream must be equal to the corresponding element in this vector. The length of this
vector must be equal to NumInputStreams.

To generate the PL scrambling sequence, the actual index used is PLScramblingIndex*10949.
Data Types: double

RolloffFactor — Transmit filter roll-off factor
0.35 (default) | 0.05]0.1|0.15]|0.2]0.25

Transmit filter roll-off factor for baseband pulse shaping, specified as 0.35, 0.05, 0.1, 0.15, 0.2, or
0.25.

Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the raised cosine filter is truncated to a length that spans the number
of symbols specified in this property.

Data Types: double

SamplesPerSymbhol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Data Types: double

ISSYI — Input stream synchronization indicator
0 or false (default) | 1 or true

Input stream synchronization (ISSY) indicator, specified as a logical value of 0@ (false) or 1 (true).
To indicate that input stream synchronization is used, set this value to 1 (true).

Dependencies

To enable this property, set the NumInputStreams property to a value greater than 1 and set the
UPL property to a nonzero value.

Data Types: logical

ISCRFormat — Input stream clock reference format
"short" (default) | "long"

Input stream clock reference format, specified as one of these options.

* "short" — Indicates the length of ISSY as 2 bytes
* "long" — Indicates the length of ISSY as 3 bytes

dvbs2xWaveformGenerator

When you set the StreamFormat property to "GS", NumInputStreams property to a value greater
than 1, UPL property to a nonzero value, and ISSYI to 1 (true), only the "short" option of this
ISCRFormat property is applicable.

Dependencies

To enable this property, set the St reamFormat property to "TS", the NumInputStreams property to
a value greater than 1, and the ISSYT property to 1 (true).

Data Types: char | string

MinNumPackets — Minimum number of packets required to create DF
integer in the range [1, 58,112] | row vector of integers

This property is read-only.
Minimum number of packets required to create a DF, returned as one of these options.

* Integer in the range [1, 58,112] — This option applies with single-input streams only.

* Row vector of integers in the range [1, 58,112] — This option applies with multi-input streams
only. If you set the NumInputStreams property to a value greater than 1, the minimum number of
packets required for each stream is equal to the corresponding element in this vector. The length
of this vector must be equal to NumInputStreams.

The value of MinNumPackets is computed based of values of DFL and UPL properties.

Dependencies

To enable this property, set the UPL property to a nonzero value.

Data Types: double
Usage

Syntax
txWaveform = s2xWaveGen(data)
Description

txWaveform = s2xWaveGen(data) generates a DVB-S2X time-domain waveform from the input
information bits.

Input Arguments

data — Input information bits
binary-valued column vector | cell array of binary-valued column vectors

Input information bits, specified as one of these options. Each element of the column vector or cell
array can be of the data type double, int8, or logical.
* Binary-valued column vector - Use this option with single-input stream.

» Cell array of binary-valued column vectors - Use this option with multi-input streams. Each
element of the array represents the corresponding input stream. The length of the cell array must
be equal to the value of the NumInputStreams property.

4-19

4 System Objects

4-20

data, either single stream or multi-stream, can be input in one of these forms.

* Packetized stream - The number of packets in each stream must be an integer multiple of the
MinNumPackets property.

For a packetized stream, an 8-bit sync field must be included at the beginning of each packet. The
combined length of a packet and its sync bits must be equal to the corresponding value of the UPL
property.

* Continuous Stream - The number of bits for each stream must be an integer multiple of the DFL
property.

Note When you set the StreamFormat property to "TS", the sync byte is fixed as 47 hex.

Data Types: double | int8 | logical | cell
Output Arguments

txWaveform — Generated time-domain DVB-S2X waveform
column vector

Generated time-domain DVB-S2X waveform, returned as a column vector. The waveform is generated
in the form of complex in-phase quadrature (IQ) samples and can consist of a single physical layer
frame or multiple physical layer frames.

When you set the NumInputStreams property to a value greater than 1, the data fields generated
from different input streams are merged using the round-robin technique.

Data Types: double

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbs2xWaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

isLocked Determine if System object is in use

reset Reset internal states of System object

Examples

dvbs2xWaveformGenerator

Generate DVB-S2X Waveform for Single-Input Stream

Generate a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) time-domain
waveform for a single-input transport stream (TS) with a single physical layer (PL) frame per stream.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file'")
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 1;

Create a DVB-S2X System object with pilot-aided PL.

s2xWaveGen = dvbs2xWaveformGenerator;
s2xWaveGen.PLSDecimalCode = 133; % QPSK 13/45
% All odd PLSDecimalCode values are pilot aided
disp(s2xWaveGen)

dvbs2xWaveformGenerator with properties:

StreamFormat: "TS"
HasTimeSlicing: false
NumInputStreams: 1
PLSDecimalCode: 133
DFL: 18448
PLScramblingIndex: 0
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 4

Show all properties

Create the bit vector of information bits, data, of concatenated TS user packets.

syncBits = [0 1 0600 111]'; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
numPkts = s2xWaveGen.MinNumPackets*numFrames;

txRawPkts = randi([0 1],pktLen,numPkts);

txPkts = [repmat(syncBits,1,numPkts); txRawPkts];

data = txPkts(:);

Generate a DVB-S2X time-domain waveform using the information bits, data.

txWaveform = s2xWaveGen(data);

4-21

4 System Objects

4-22

Generate DVB-S2X Waveform Consisting of VL-SNR Frame

Generate a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) time-domain
waveform for a single-input generic stream (GS) with multiple physical layer (PL) frames per stream.

The DVB-S2X waveform generated in this example consists of a very low signal to noise ratio (VL-
SNR) frame of set 2.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat', 'file'")
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of PL frames per stream.

numFrames = 2;

Create a DVB-S2X System object and specify its properties.

s2xWaveGen = dvbs2xWaveformGenerator;
s2xWaveGen.StreamFormat = "GS";
s2xWaveGen.PLSDecimalCode = 131; % VL-SNR set 2
s2xWaveGen.CanonicalMODCODName = "BPSK 1/3";
s2xWaveGen.DFL = 5080;

s2xWaveGen.SamplesPerSymbol = 6;

disp(s2xWaveGen)

dvbs2xWaveformGenerator with properties:

StreamFormat: "GS"
HasTimeSlicing: false
NumInputStreams: 1
UPL: ©
PLSDecimalCode: 131
CanonicalMODCODName: "BPSK 1/3"
DFL: 5080
PLScramblingIndex: 0
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 6

Create a bit vector of information bits for each stream.
data = randi([0 1],s2xWaveGen.DFL*numFrames,1, ' 'int8');

Generate a DVB-S2X time-domain waveform using the information bits.

txWaveform = s2xWaveGen(data);

.zip';

dvbs2xWaveformGenerator

Get DVB-S2X Waveform Generator Information and Check Transmit Filter Delay

Get information from a dvbs2xWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

This example uses MAT-files with LDPC parity matrices. If the MAT-files are not available on the path,
download and unzip the MAT-files by entering this code at the MATLAB command prompt.

if ~exist('dvbs2xLDPCParityMatrices.mat','file")
if ~exist('s2xLDPCParityMatrices.zip','file')
url = 'https://ssd.mathworks.com/supportfiles/spc/satcom/DVB/s2xLDPCParityMatrices.zip';
websave('s2xLDPCParityMatrices.zip',url);
unzip('s2xLDPCParityMatrices.zip');
end
addpath('s2xLDPCParityMatrices');
end

Specify the number of physical layer (PL) frames per stream.

numFrames = 2;

Create a Digital Video Broadcasting Satellite Second Generation extended (DVB-S2X) System object
and specify its properties. Use time slicing technique and variable coding and modulation
configuration mode.

s2xWaveGen = dvbs2xWaveformGenerator();

s2xWaveGen.HasTimeSlicing = true;

s2xWaveGen.NumInputStreams = 2;

s2xWaveGen.PLSDecimalCode = [135 145]; % QPSK 9/20 and 8PSK 25/36
s2xWaveGen.DFL = [18048 44656];

s2xWaveGen.PLScramblingIndex = [0 1];

disp(s2xWaveGen)

dvbs2xWaveformGenerator with properties:

StreamFormat: "TS"
HasTimeSlicing: true
NumInputStreams: 2
PLSDecimalCode: [135 145]
DFL: [18048 446561
PLScramblingIndex: [0 1]
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 4
ISSYI: false

Show all properties

Get the characteristic information about the DVB-S2X waveform generator.
info(s2xWaveGen)
ans = struct with fields:

FECFrame: {'normal' ‘'normal'}

ModulationScheme: {'QPSK' '8PSK'}
LDPCCodeIdentifier: {'9/20' '25/36'}

4-23

4 System Objects

4-24

Create the bit vector of input information bits, data, of concatenated TS user packets for each input
stream.

syncBits = [0 1 0 0 0611 1]"; % Sync byte for TS packet is 47 Hex
pktLen = 1496; % UP length without sync bits is 1496
data = cell(1l, s2xWaveGen.NumInputStreams);

for i = 1l:s2xWaveGen.NumInputStreams
numPkts = s2xWaveGen.MinNumPackets (i)*numFrames;
txRawPkts = randi([0 1], pktLen, numPkts);
txPkts = [repmat(syncBits, 1, numPkts); txRawPkts];
data{i} = txPkts(:);

end

Generate a DVB-S2X time-domain waveform using the information bits.
txWaveform = s2xWaveGen(data);

Check the filter residual data samples that remain in the filter delay.
flushFilter(s2xWaveGen)

ans = 40x1 complex

-0.2412 - 0.0143i
-0.2619 - 0.08611i
-0.2726 - 0.13371
-0.2511 - 0.1597i
-0.1851 - 0.16801
-0.0780 - 0.16021
0.0448 - 0.12881
0.1598 - 0.07511i
0.2482 - 0.00491i
0.3026 + 0.07021
References

[1] ETSI Standard EN 302 307-1 V1.4.1(2014-11). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications (DVB-S2).

[2] ETSI Standard EN 302 307-2 V1.1.1(2015-11). Digital Video Broadcasting (DVB); Second
Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting,
Interactive Services, News Gathering and other Broadband Satellite Applications; Part 2:
DVB-S2 Extensions (DVB-S2X).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

» For all properties that support string and cell array input, code generation is only supported with
cell array input.

dvbs2xWaveformGenerator

* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

Objects
dvbs2WaveformGenerator

Functions
dvbs2BitRecover

Introduced in R2021a

4-25

4 System Objects

4-26

etsiRicianChannel

Filter input signal through multipath ETSI frequency-flat Rician fading channel

Description

The etsiRicianChannel System object filters an input signal through a multipath European
Telecommunication Standards Institute (ETSI) frequency-flat Rician fading channel. For more
information on the etsiRicianChannel fading model, see “Channel Model Block Diagram” on page
4-32.

To filter an input signal using a multipath ETSI Rician fading channel:

1 Create the etsiRicianChannel object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

etsiRicianChannel
etsiRicianChannel (Name, Value)

chan
chan

Description

chan = etsiRicianChannel creates a multipath ETSI frequency-flat Rician fading channel System
object. This object filters a real or complex input signal through the multipath channel to obtain the
channel-impaired signal.

chan = etsiRicianChannel(Name,Value) sets properties on page 4-26 using one or more
name-value pairs. Enclose each property name in quotes. For example,
etsiRicianChannel("SampleRate",2) sets the input signal sample rate to 2.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Input signal sample rate
1 (default) | positive scalar

Input signal sample rate in Hz, specified as a positive scalar.

etsiRicianChannel

Data Types: double

KFactor — Rician K-factor
3 (default) | nonnegative nonzero scalar

Rician K-factor in dB, specified as a nonnegative nonzero scalar.

KFactor is the ratio of direct signal power to the total multipath power. For details, see “Channel
Model Block Diagram” on page 4-32.

Data Types: double

MaximumDopplerShift — Maximum Doppler shift for channel path
0.001 (default) | nonnegative scalar

Maximum Doppler shift for the channel path, specified as a nonnegative scalar. Units are in hertz.

When you set this property to 0, the channel remains static for the entire input. You can use the
reset object function to generate a new channel realization. The MaximumDopplerShift property
value must be smaller than SampleRate/10.

Data Types: double

NumSinusoids — Number of sinusoids used
48 (default) | positive integer

Number of sinusoids used to model the fading process, specified as a positive integer.

Data Types: double

RandomStream — Source of random number stream
"Global stream" (default) | "mt19937ar with seed"

Source of random number stream, specified as one of these options.

* "Global stream" — The current global random number stream is used for normally distributed
random number generation. In this case, the reset object function resets the channel filters only.

* "mtl9937ar with seed" — The mt19937ar algorithm is used for normally distributed random
number generation. In this case, the reset object function resets the channel filters and
reinitializes the random number stream to the value of the seed property.

Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of the mt19937ar random number stream generator algorithm, specified as a nonnegative
integer.

Dependencies

To enable this property, set the RandomSt ream property to "mt19937ar with seed".
Data Types: double

Visualization — Channel visualization
"Off" (default) | "Impulse response" | "Frequency response" | "Impulse and frequency
responses" | "Doppler spectrum”

4-27

4 System Objects

4-28

Channel visualization, specified as "0ff", "Impulse response", "Frequency response",
"Impulse and frequency responses", or "Doppler spectrum".

Data Types: char | string
Usage

Syntax

y = chan(x)
[y,pathgains] = chan(x)

Description

y = chan(x) filters input signal x through a multipath ETSI frequency-flat Rician fading channel
and returns the output signal in y.

[y,pathgains] = chan(x) returns the channel path gains of the underlying multipath ETSI
frequency-flat Rician fading process in pathgains.

Input Arguments

x — Input signal
Ng-by-1 vector
Input signal, specified as an Ng-by-1 vector, where Ng is the number of samples.

Data Types: double
Complex Number Support: Yes

Output Arguments

y — Output signal
Ng-by-1 vector

Output signal, returned as an Ng-by-1 vector of complex values with the same data precision as the
input signal x on page 4-0 . Ngis the number of samples.

Data Types: double
Complex Number Support: Yes

pathgains — Path gains
Ng-by-1 vector

Path gains, returned as an Ng-by-1 vector of complex values with the same data precision as the input
signal x on page 4-0 . Ny is the number of samples.

Data Types: double
Complex Number Support: Yes

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

etsiRicianChannel

release(obj)

Specific to etsiRicianChannel
info Characteristic information about object

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

isLocked Determine if System object is in use

reset Reset internal states of System object

Examples

Transmit Input Signal Through ETSI Rician Channel

Transmit an input signal through a European Telecommunication Standards Institute (ETSI) Rician
channel model.

Define the channel configuration using an etsiRicianChannel System object and specify its
properties.

chan = etsiRicianChannel;
chan.SampleRate = 2.9e6;
chan.KFactor = 4;
chan.MaximumDopplerShift = 30;
chan.NumSinusoids = 45;
disp(chan)

etsiRicianChannel with properties:
SampleRate: 2900000
KFactor: 4
MaximumDopplerShift: 30
Use get to show all properties
Generate a QPSK-modulated input signal to pass through the channel.
txWaveform = pskmod(randi([0 3],chan.SampleRate,l),4);
Filter the signal through the Rician channel.

rxWaveform = chan(txWaveform);

Verify ETSI Rician Channel Outputs Using Two Random Number Generation Methods

Produce the same multipath European Telecommunication Standards Institute (ETSI) Rician fading
channel response by using two different methods for random number generation. The multipath ETSI
Rician fading channel System object includes two methods for random number generation. You can

4-29

4 System Objects

use the current global stream or the mt19937ar algorithm with a specified seed. By interacting with
the global stream, the System object can produce the same outputs from the two methods.

Create etsiRicianChannel System object, and then specify its properties. Set the random number
generation method as the mt19937ar algorithm.

chan = etsiRicianChannel;

chan.SampleRate = 150000;

chan.KFactor = 2;

chan.MaximumDopplerShift = 10;
chan.RandomStream = "mt19937ar with seed";
chan.Seed = 80;

Modulate randomly generated data.

txWaveform = pskmod(randi([0@ 3],512,1),4);

Filter the modulated data by using the multipath Rician fading channel System object.
[ChanOutl,PathGainsl] = chan(txWaveform);

Set the System object to use the global stream for random number generation.

release(chan);
chan.RandomStream = "Global stream";

Set the global stream to have the same seed that was specified when creating the multipath Rician
fading channel System object.

rng(80)
Filter the modulated data by using the multipath Rician fading channel System object again.
[ChanQut2,PathGains2] = chan(txWaveform);

Verify that the channel and path gain outputs are the same for each of the two random number
generation methods.

isequal (ChanQutl,ChanOut?2)

ans = logical
1

isequal (PathGainsl,PathGains2)

ans = logical
1

Plot Doppler Spectrum for ETSI Rician Fading Channel

Create a multipath European Telecommunication Standards Institute (ETSI) Rician fading channel
and display its Doppler spectrum.

Create etsiRicianChannel System object, and then specify its properties.

4-30

etsiRicianChannel

chan = etsiRicianChannel;

chan.SampleRate = 3.6€6;

chan.KFactor = 10;

chan.MaximumDopplerShift = 50;

chan.Visualization = "Doppler Spectrum"; % Jake's Doppler spectrum

Generate random binary data for n consecutive frames and pass the data through the multipath
Rician fading channel.

n = 50;
for i = 1:n
X = randi([0 1],3.6e€6,1);
y = chan(x); % Spectrum visualization is updated only when the buffer is filled
% Required samples to fill the buffer is mentioned in the scope
end
(| = =] A
File Tools View Playback Help N

CMENMIMIED

Frequency {Hz)

Processing

4-31

4 System Objects

4-32

More About
Channel Model Block Diagram

The channel model block diagram provides an overview of the etsiRicianChannel System object,
as specified in ETSI TS 101 376-5-5 V1.3.1 (2005-02) [1].

* The complex input signal is multiplied by a fixed gain and then by a complex Rayleigh fading gain.
These actions form the multipath portion of the signal path. K is the Rician fade factor in dB.

* The multipath portion is then added to the direct signal component to form the Rician fading
signal. This action forms the line-of-sight (LOS) component of the signal path.

The coherent summation of many multipath components yield a classical Doppler spectrum for
Rayleigh fading process, which when added to the direct path signal, forms the Rician fading
signal.

* Noise samples can be subsequently added to the sum of the LOS component and multipath
components.

LOS Component

Complex Input Signal Carﬁplex Output Signal

—X

Multipath
Component
Jake's Rayleigh
104 (-K720) Flat Fade
Generator

Note The power of the complex output faded signal is (1+1/K;), where K; is the “KFactor” on page 4-
0 .

etsiRicianChannel

References

[11ETSITS 101 376-5-5 V1.3.1 (2005-02). GEO-Mobile Radio Interface Specifications (Release 1);
Part 5: Radio interface physical layer specifications; Sub-part 5: Radio Transmission and
Reception; GMR-1 05.005.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Code generation is available only when the Visualization property is "Off".
* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
comm.RicianChannel | comm.RayleighChannel | comm.AWGNChannel |

comm.RayTracingChannel

Functions
doppler

Introduced in R2021a

4-33

4 System Objects

ccsdsTMWaveformGenerator

Generate CCSDS TM waveform

Description

The ccsdsTMWaveformGenerator System object generates a Consultative Committee for Space
Data Systems (CCSDS) Telemetry (TM) time-domain waveform. The object implements the waveform
generation aspects of CCSDS standard blue books:

¢ CCSDS 131.0-B-3 — TM synchronization and channel coding [1]

* CCSDS 401.0-B-30 — Radio frequency and modulation systems [2]

* (CCSDS 131.2-B-1 — Flexible advanced coding and modulation scheme for high rate TM
applications [3]

Note The object supports waveform generation specified by the CCSDS TM synchronization and
channel coding standard [1] and CCSDS flexible advanced coding and modulation scheme for high
rate TM standard [3]. To obtain the waveform for either of the desired standard, set the
WaveformSource property.

To generate a CCSDS TM waveform:

1 Create the ccsdsTMWaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

tmWaveGen = ccsdsTMWaveformGenerator

tmWaveGen = ccsdsTMWaveformGenerator(Name,Value)
Description

tmWaveGen = ccsdsTMWaveformGenerator creates a default CCSDS TM waveform generator
System object.

tmWaveGen = ccsdsTMWaveformGenerator (Name,Value) sets “Properties” on page 4-35 using
one or more name-value pairs. For example,
ccsdsTMWaveformGenerator("WaveformSource", "flexible advanced coding and
modulation", "ACMFormat",b20) specifies the CSSDS TM waveform source as flexible advanced
coding and modulation standard with ACM format as 20 for the generated waveform.

4-34

ccsdsTMWaveformGenerator

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

General

WaveformSource — CCSDS TM waveform source
"synchronization and channel coding" (default) | "flexible advanced coding and
modulation"

CCSDS TM waveform source, specified as one of these values.

* "synchronization and channel coding" — Use this option to set the waveform to CCSDS
TM synchronization and channel coding, as specified in CCSDS 131.0-B-3 [1].

+ "flexible advanced coding and modulation" — Use this option to set the waveform to
CCSDS f{lexible advanced coding and modulation for high rate TM applications, as specified in
CCSDS 131.2-B-1 [3].

Data Types: char | string

ACMFormat — ACM format
1 (default) | integer in the range [1, 27]

Adaptive coding and modulation (ACM) format, specified as an integer in the range [1, 27], as
specified in CCSDS 131.2-B-1 Section 5.2.4 Table 5-2 [3].

Tunable: Yes

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".

Data Types: double | uint8

NumBytesInTransferFrame — Number of bytes in one transfer frame
223 (default) | integer in the range [1, 2048]

Number of bytes in one transfer frame, specified as an integer in the range [1, 2048].

Dependencies
To enable this property, one of these conditions should be satisfied:

* SetWaveformSource property to "synchronization and channel coding" and the
ChannelCoding property to "none", "convolutional", or "LDPC" on stream of sync marked
transfer frame (SMTF).

* SetWaveformSource property to "flexible advanced coding and modulation". In this
case, the minimum number of NumBytesInTransferFrame is 223.

4-35

4 System Objects

4-36

For other values of ChannelCoding, this NumBytesInTransferFrame property is calculated
internally based on other properties.

Data Types: double | uint16

HasRandomizer — Option for randomizing data
1 or true (default) | @ or false

Option for randomizing the data, specified as a numeric or Logical value of 1 (true) or 0 (false).
Set this value to 1 (true) to randomize the data present in the channel access data unit (CADU).

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

When you set the ChannelCoding property to "LDPC" and IsLDPCOnNSMTF property to 1 (true),
this property is not applicable, and is set to 1 (true).

Data Types: double | logical

HasASM — Option for inserting ASM
1 or true (default) | @ or false

Option for inserting attached sync marker (ASM), specified as a numeric or Logical value of 1
(true) or 0 (false). Set this value to 1 (true) to indicate the data in CADU is attached with ASM.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

When you set the ChannelCoding property to "LDPC" and IsLDPCOnSMTF property to 1 (true),
this property is not applicable, and is set to 1 (true).

Data Types: double | logical

PCMFormat — PCM format
"NRZ-L" (default) | "NRZ-M"

Pulse code modulation (PCM) format to select the PCM coding in the CCSDS TM waveform, specified
as one of these values.

* "NRZ-L" — NRZ-level
* "NRZ-M" — NRZ-mark

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the Modulation property to "BPSK", "QPSK", "8PSK", "0OPSK", or "PCM/PSK/PM".

Data Types: char | string
Channel Coding

ChannelCoding — Forward error correction coding scheme
"RS" (default) | "none" | "convolutional” | "concatenated" | "turbo" | "LDPC"

ccsdsTMWaveformGenerator

Forward error correction coding scheme, specified as one of these values.

* "none"

o "RS"

* "convolutional"
* "concatenated"
e "turbo"

« "LDPC"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

Data Types: char | string

NumBitsInInformationBlock — Number of bits in turbo or LDPC message
7136 (default) | 1784 | 3568 | 8920 | 1024 | 4096 | 16384

Number of bits in the turbo or lower density parity check (LDPC) message, specified as one of these
values.

* 1784, 3568, 7136, or 8920 — Use one of these values when you set the ChannelCoding property
to "turbo".

* 1024, 4096, 16384, or 7136 — Use one of these values when you set the ChannelCoding
property to "LDPC".

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "turbo" or "LDPC".

Data Types: double | uint8

ConvolutionalCodeRate — Code rate of convolutional code
II1/2II (default) | II2/3II | II3/4II | II5/6II | II7/8II

Code rate of convolutional code, specified as a one of these values.

. 172"
. "2/3"
. "3/4"
. "5/6"
. "7/8"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "convolutional" or "concatenated".

When you set the ChannelCoding property to "concatenated", the numeric value of the code rate
also depends on the constituent Reed-Solomon (RS) code. You can obtain the actual numeric value for
any code from the output field ActualCodeRate of the info object function.

4-37

4 System Objects

4-38

Data Types: char | string

CodeRate — Code rate of turbo or LDPC code
"1/2" (for turbo code) (default) | "7/8" (for LDPC code) (default) | "2/3" | "1/3" | "1/4" | "1/6" |
"4/5"

Code rate of turbo or LDPC code, specified as one of these values.

e "1/2","1/3","1/4",0r "1/6" — Use one of these values when you set the ChannelCoding
property to "turbo".

e "1/2","2/3","4/5",0r "7/8" — Use one of these values when you set the ChannelCoding
property to “LDPC".

Note When you set the ChannelCoding property to "LDPC" and the
NumBitsInInformationBlock property to 7136, the CodeRate must be "7/8".

For an LDPC code, setting CodeRate to 7/8 implies an actual code rate numeric value of 223/255.
You can obtain the actual numeric value for any code from the output field ActualCodeRate of the
info object function.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to either "turbo" or "LDPC".

Data Types: char | string

RSMessageLength — Number of bytes in one RS message block
223 (default) | 239

Number of bytes in one RS message block, specified as 223 or 239.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".
Data Types: double | uint8

RSInterleavingDepth — Interleaving depth of RS code
1 (default) |2 |3]4|5]|8

Interleaving depth of the RS code, specified as 1, 2, 3, 4, 5, or 8. The interleaving depth is the
number of RS codewords in one code block.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".
Data Types: double | uint8

IsRSMessageShortened — Option to shorten RS code
0 or false (default) | 1 or true

ccsdsTMWaveformGenerator

Option to shorten the RS code, specified as a numeric or Llogical value of @ (false) or 1 (true). Set
this value to 1 (true) to shorten the RS code.

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "RS" or "concatenated".

Data Types: double | logical

RSShortenedMessageLength — Number of bytes in RS shortened message block
223 (default) | integer in the range [1, RSMessagelLength]

Number of bytes in the RS shortened message block, specified as an integer in the range [1,
RSMessagelengthl].

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding", the ChannelCoding property to "RS" or "concatenated", and the
IsRSMessageShortened property to 1 (true).

Data Types: double | uint8

IsLDPCOnSMTF — Option for using LDPC on stream of SMTF
0 or false (default) | 1 or true

Option for using LDPC on the stream of a sync marked transfer frame (SMTF), specified as a numeric
or logical value of @ (false) or 1 (true). Set this value to 1 (true) to indicate LDPC on the stream
of SMTF as specified in CCSDS 131.0-B-3 Section 8 of the TM synchronization and channel coding
standard [1]. To indicate LDPC on the transfer frame, set this value to 0 (false).

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding" and the ChannelCoding property to "LDPC".

Data Types: double | logical

LDPCCodeBlockSize — Number of LDPC codewords in LDPC code block of stream of SMTF
1 (default) | integer in the range [1, 8]

Number of LDPC codewords in the LDPC code block of the stream of SMTF, specified as an integer in
the range [1, 8].

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding", the ChannelCoding property to "LDPC", and the IsLDPCOnSMTF property to true.

Data Types: double | uint8

Digital Modulation and Filter

Modulation — Modulation scheme

"QPSK" (default) | "BPSK" | "8PSK" | "0QPSK" | "GMSK" | "PCM/PSK/PM" | "PCM/PM/biphase-L" |
"4D-8PSK-TCM"

Modulation scheme used in CCSDS TC waveform, specified as one of these values.

4-39

4 System Objects

4-40

. "QPSK"
. "BPSK"
. "8PSK"
. "0QPSK"
.« "GMSK"

+ "PCM/PSK/PM"
* "PCM/PM/biphase-L"
+ "4D-8PSK-TCM"

Dependencies

To enable this property, set the WaveformSource property to "synchronization and channel
coding".

Data Types: char | string

PulseShapingFilter — Pulse shaping filter
"root raised cosine" (default) | "none"

Pulse shaping filter, specified as "root raised cosine" or "none".
Dependencies
To enable this property, one of these conditions must be satisfied:

* SetWaveformSource property to "synchronization and channel coding" and the
Modulation property to "BPSK", "QPSK", "8PSK", or "4D-8PSK-TCM".

* SetWaveformSource property to" flexible advanced coding and modulation”.
Data Types: char | string

RolloffFactor — Roll-off factor of SRRC baseband filter
0.35 (default) | scalar in the range [0, 1]

Roll-off factor of the square root raised cosine (SRRC) baseband filter, specified as a scalar in the
range [0, 1].

Note This property is not applicable when you set the PulseShapingFilter property to "none"
for either value of the WaveformSource property.

Dependencies
To enable this property, one of these conditions must be satisfied:

* SetWaveformSource property to "synchronization and channel coding" and the
Modulation property to either "BPSK", "QPSK", "8PSK", "0QPSK", or "4D-8PSK-TCM".

* SetWaveformSource property to "flexible advanced coding and modulation".
Data Types: double

FilterSpanInSymbols — Filter span in number of symbols
10 (default) | positive integer

ccsdsTMWaveformGenerator

Filter span in number of symbols, specified as a positive integer.

The ccsdsTMWaveformGenerator System object truncates the infinite impulse response of the ideal
root raised cosine filter to this value.

Note This property is not applicable when you set the PulseShapingFilter property to "none"
for either value of the WaveformSource property.

Dependencies
To enable this property, one of these conditions must be satisfied:

* SetWaveformSource property to "synchronization and channel coding" and the
Modulation property to either "BPSK", "QPSK", "8PSK", "0QPSK", or "4D-8PSK-TCM".

* SetWaveformSource property to "flexible advanced coding and modulation".
Data Types: double | uint32

BandwidthTimeProduct — Bandwidth time product for GMSK modulator
0.25 (default) | 0.5

Bandwidth time product for the Gaussian minimum shift keying (GMSK) modulator, specified as 0.25
or 0.5.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "GMSK".

Data Types: double

ModulationEfficiency — Modulation efficiency of 4D-8PSK-TCM
2 (default) | 2.25]2.5|2.75

Modulation efficiency of 4D-8PSK trellis coded modulator (TCM), specified as 2, 2.25, 2.5, or 2.75.
This property indicates the number of bits for each complex baseband symbol.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "4D-8PSK-TCM".

Data Types: double

SubcarrierWaveform — Type of waveform to PSK-modulate NRZ data
"sine" (default) | "square"

Type of waveform to PSK-modulate the non-return-to-zero (NRZ) data, specified as "sine" or
"square".

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".

Data Types: char | string

4-41

4 System Objects

ModulationIndex — Modulation index in residual carrier phase modulation
0.4 (default) | scalar in the range [0.2, 2]

Modulation index in the residual carrier phase modulation, specified as a scalar in the range [0.2, 2].
Units are in radians.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM" or "PCM/PM/biphase-L".

Data Types: double

SymbolRate — Coded symbol rate
2000 (default) | positive scalar

Coded symbol rate in Hz, specified as a positive scalar.

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".

Data Types: double

SubcarrierToSymbolRateRatio — Ratio of subcarrier frequency to symbol rate
4 (default) | integer in the range [1, 50]

Ratio of the subcarrier frequency to the symbol rate, specified as an integer in the range [1, 50].

Dependencies

To enable this property, set WaveformSource property to "synchronization and channel
coding" and the Modulation property to "PCM/PSK/PM".

Data Types: double | uint8

SamplesPerSymbol — Number of samples per symbol
10 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

This property is applicable for either input value of the WaveformSource property.

Dependencies
To enable this property, one of these conditions must be satisfied:

* Set the Modulation property to "0QPSK", "PCM/PSK/PM", or "GMSK".
* Set the PulseShapingFilterto "root raised cosine".

Data Types: double | uint8

HasPilots — Option for inserting pilot symbols
0 or false (default) | 1 or true

Option for inserting pilot symbols within data, specified as a numeric or Logical value of 0 (false)
or 1 (true). Set this value to 1 (true) to indicate pilots are inserted, as described in CCSDS flexible
advanced coding and modulation scheme for high rate TM standard [3].

4-42

ccsdsTMWaveformGenerator

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".

Data Types: double | Llogical

ScramblingCodeNumber — Scrambling code number
0 (default) | integer in the range [0, (28 - 2)]

Scrambling code number for flexible advanced coding and modulation for high rate TM applications
standard [3], specified as an integer in the range [0, (2! - 2)].

ScramblingCodeNumber is used to randomize the complex baseband symbols.

Dependencies

To enable this property, set the WaveformSource property to "flexible advanced coding and
modulation".

Data Types: double | uint32
Read-Only

NumInputBits — Minimum number of bits required to generate waveform
integer

This property is read-only.
Minimum number of input bits to generate a waveform, returned as an integer.

The number of input bits must be an integer multiple of NumInputBits.

Data Types: double

MinNumTransferFrames — Minimum number of transfer frames for nonempty output
integer

This property is read-only.

Minimum number of transfer frames for a nonempty System object output, returned as an integer.
When you set the WaveformSource property to "flexible advanced coding and
modulation”, orto "synchronization and channel coding" with the IsLDPCOnSMTF

property set to 1 (true), System object output is empty until it has sufficient input to process through
channel coding and modulation.

Data Types: double

Usage

Syntax

txWaveform = tmWaveGen(bits)
[txWaveform,encodedBits] = tmWaveGen(bits)

4-43

4 System Objects

4-44

Description

txWaveform = tmWaveGen(bits) generates a CCSDS TM time-domain waveform for the
corresponding input bits.

[txWaveform,encodedBits] = tmWaveGen(bits) also returns the bits obtained after TM
synchronization and channel coding sublayer operations.

Input Arguments

bits — Information bits
binary-valued column vector

Information bits, in the form of transfer frames, specified as a binary-valued column vector. The
length of this vector must be an integer multiple of the number of bits in one transfer frame. The
NumInputBits property indicates the number of bits in one transfer frame.

Data Types: double | int8 | logical
Output Arguments

txWaveform — Generated CCSDS TM time-domain waveform
column vector

Generated CCSDS TM time-domain waveform, returned as a column vector. This output is generated
in the form of complex in-phase quadrature (IQ) samples.

Data Types: double

encodedBits — Output bits obtained after TM synchronization and channel coding sublayer
operations
binary-valued column vector

Output bits obtained after TM synchronization and channel coding sublayer operations, returned as a
binary-valued column vector.

Data Types: double | int8 | logical

Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to ccsdsTMWaveformGenerator
info Characteristic information about object
flushFilter Flush transmit filter

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

ccsdsTMWaveformGenerator

isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Generate CCSDS TM Waveform for Synchronization and Channel Coding Scheme

Generate a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) waveform for
the synchronization and channel coding standard, for multiple transfer frames. Visualize the
waveform by using a spectrum plot.

Create a CCSDS TM System object. Set the waveform type as synchronization and channel
coding with GMSK-modulated concatenated codes.

tmWaveGen = ccsdsTMWaveformGenerator;

tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "concatenated";

tmWaveGen.Modulation = "GMSK";

tmWaveGen.RSMessageLength = 239;

tmWaveGen.RSInterleavingDepth = 2;
tmWaveGen.BandwidthTimeProduct = 0.5;

disp(tmWaveGen)

ccsdsTMWaveformGenerator with properties:

WaveformSource: "synchronization and channel coding"
HasRandomizer: true
HasASM: true

Channel coding
ChannelCoding: "concatenated"
ConvolutionalCodeRate: "1/2"
RSMessagelLength: 239
RSInterleavingDepth: 2
IsRSMessageShortened: false

Digital modulation and filter

Modulation: "GMSK"

BandwidthTimeProduct: 0.5000
SamplesPerSymbol: 10

Use get to show all properties

Specify the number of transfer frames.

numTF = 15;
waveform = []; % Initialize waveform as null

Generate the CCSDS TM waveform for the synchronization and channel coding standard by using
multiple System object calls.

rng default % For reproducible results

for iTF = 1:numTF
bits = randi([0 1], tmWaveGen.NumInputBits,1);
waveform = [waveform; tmWaveGen(bits)];

end

4-45

4 System Objects

Create a dsp.SpectrumAnalyzer System object to display the frequency spectrum of the generated
CCSDS TM time-domain waveform.

BW = 36€6; % Typical satellite channel bandwidth

Fsamp = tmWaveGen.SamplesPerSymbol*BW;

scope = dsp.SpectrumAnalyzer('SampleRate',Fsamp,...
"AveragingMethod', 'Exponential');

scope(waveform)

i o= || =) ER
File Tools View Playback Help L]

B-|« -0 & XS W WEN | G

Frequency (MHz)
Processing REW=351 563 kHz Sample rate=360 MHz | T=0

Generate CCSDS TM Waveform for Flexible Advanced Coding and Modulation Scheme

Generate a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) waveform for
the flexible advanced coding and modulation scheme for high rate TM applications standard, for one
physical layer (PL) frame. Visualize the waveform by using a scatter plot.

Create a CCSDS TM System object, and then specify its properties.

tmWaveGen = ccsdsTMWaveformGenerator;

tmWaveGen.WaveformSource = "flexible advanced coding and modulation";
tmWaveGen.ACMFormat = 17; % 16APSK

tmwWaveGen.PulseShapingFilter = "none";

disp(tmWaveGen)

4-46

https://www.mathworks.com/help/dsp/ref/dsp.spectrumanalyzer-system-object.html

ccsdsTMWaveformGenerator

ccsdsTMWaveformGenerator with properties:

WaveformSource: "flexible advanced coding and modulation"
ACMFormat: 17
NumBytesInTransferFrame: 223

Channel coding
No properties.

Digital modulation and filter
PulseShapingFilter: "none"
HasPilots: false
ScramblingCodeNumber: 0

Use get to show all properties
Calculate the number of transfer frames in one PL frame.

NumTFInOnePL = tmWaveGen.MinNumTransferFrames*16; % One PL frame consists of 16 codewords, as sp
waveform = []; % Initialize waveform as null

Generate the CCSDS TM waveform for the flexible advanced coding and modulation scheme for high
rate TM applications standard.

rng default % For reproducible results

for iTF = 1:NumTFInOnePL
bits = randi([0 1], tmWaveGen.NumInputBits,1);
waveform = [waveform; tmWaveGen(bits)];

end

Display the scatter plot of the constellation for the generated waveform.

scatterplot(waveform);
legend off;

4-47

4 System Objects

4-48

Scatter plot

b
]
=
[43]
=
4]
=
=)

rn-Phase

Get CCSDS TM Waveform Generator Information and Check Transmit Filter Delay

Get information from a ccsdsTMWaveformGenerator System object by using the info function.
Then retrieve the filter residual samples by using the flushFilter object function.

Create a Consultative Committee for Space Data Systems (CCSDS) Telemetry (TM) System object.
Set the waveform type as synchronization and channel coding with low-density parity-check
(LDPC) channel coding. Display the properties.

tmWaveGen = ccsdsTMWaveformGenerator;

tmWaveGen.WaveformSource = "synchronization and channel coding";
tmWaveGen.ChannelCoding = "LDPC";
tmWaveGen.NumBitsInInformationBlock = 1024;

tmWaveGen.Modulation = "QPSK";

tmWaveGen.CodeRate = "1/2";

disp(tmWaveGen)

ccsdsTMWaveformGenerator with properties:

WaveformSource: "synchronization and channel coding"
HasRandomizer: true
HasASM: true
PCMFormat: "NRZ-L"

Channel coding

ccsdsTMWaveformGenerator

ChannelCoding: "LDPC"
NumBitsInInformationBlock: 1024
CodeRate: "1/2"

IsLDPCONSMTF: false

Digital modulation and filter
Modulation: "QPSK"
PulseShapingFilter: "root raised cosine"
RolloffFactor: 0.3500
FilterSpanInSymbols: 10
SamplesPerSymbol: 10

Use get to show all properties
Specify the number of transfer frames.
numTF = 20;
Get the characteristic information about the CCSDS TM waveform generator.
info(tmWaveGen)

ans = struct with fields:
ActualCodeRate: 0.5000
NumBitsPerSymbol: 2
SubcarrierFrequency: []

Generate the input bits for the CCSDS TM waveform generator, and then generate the waveform.

bits = randi([0 1], tmWaveGen.NumInputBits*numTF,1);
waveform = tmWaveGen(bits);

Check the filter residual data samples that remain in the filter delay.

flushFilter(tmWaveGen)

ans = 100x1 complex

-0.0772 - 0.08671
-0.0751 - 0.0859i1
-0.0673 - 0.07881
-0.0549 - 0.0654i
-0.0388 - 0.0469i
-0.0200 - 0.02501
0.0002 - 0.0012i
0.0208 + 0.02271i
0.0405 + 0.04531i
0.0587 + 0.06531i
References

[1] CCSDS 131.0-B-3. Blue Book. Issue 3. "TM Synchronization and Channel Coding."
Recommendation for Space Data System Standards. Washington, D.C.: CCSDS, September
2017.

4-49

4 System Objects

[2] CCSDS 401.0-B-30. Blue Book. Issue 30. "Radio Frequency and Modulation Systems - Part 1:
Earth Stations and Spacecraft." Recommendation for Space Data System Standards.
Washington, D.C.: CCSDS, February 2020.

[3] CCSDS 131.2-B-1. Blue Book. Issue 1. "Flexible Advanced Coding and Modulation Scheme for
High Rate Telemetry Applications." Recommendation for Space Data System Standards.
Washington, D.C.: CCSDS, March 2012.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
ccsdsTCWaveform | ccsdsTCIdealReceiver

Objects
ccsdsTCConfig

Introduced in R2021a

4-50

dvbrcs2WaveformGenerator

dvbrcs2WaveformGenerator

Generate DVB-RCS2 waveform

Description

The dvbrcs2WaveformGenerator System object generates a Digital Video Broadcasting Second
Generation Return Channel over Satellite (DVB-RCS2) time-domain reference or a custom waveform.
The object implements the waveform generation aspects of ETSI EN 301 545-2 V1.2.1 (2014-11) [1].

To generate a DVB-RCS2 waveform:

1 Create the dvbrcs2WaveformGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

rcs2WaveGen = dvbrcs2WaveformGenerator

rcs2WaveGen = dvbrcs2WaveformGenerator (Name,Value)

Description

rcs2WaveGen = dvbrcs2WaveformGenerator creates a default DVB-RCS2 waveform generator

System object.

rcs2WaveGen = dvbrcs2WaveformGenerator(Name,Value) sets properties on page 4-51 using
one or more name-value arguments. For example, 'TransmissionFormat', "SS-TC-LM" specifies
to generate a reference DVB-RCS2 waveform of spread spectrum turbo codes with linear modulation
(SS-TC-LM) format.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

TransmissionFormat — Transmission format
"TC-LM" (default) | "SS-TC-LM"

Transmission format, specified as one of these values.

4-51

4 System Objects

4-52

e "TC-LM" — Turbo codes with linear modulation (TC-LM)
e "SS-TC-LM" — Spread spectrum turbo codes with linear modulation (SS-TC-LM)

Tunable: Yes

Data Types: char | string

ContentType — Frame PDU burst content type
"traffic" (default) | "logon" | "control"

Frame protocol data unit (PDU) burst content type, specified as "traffic", "logon", or
"control".

Data Types: char | string

IsCustomWaveform — Custom waveform indicator
false or O (default) | true or 1

Custom waveform indicator, specified as one of these numeric or logical values.

* 0 (false) — Generate a standard-defined reference waveform. For details, refer to ETSI EN 301
545-2 V1.2.1 (2014-11) Annex A Tables A-1 and A-2 [1].

e 1 (true) — Generate a custom waveform.

Tunable: Yes

Data Types: logical

WaveformID — Reference waveform ID
1 (default) | positive integer

Reference waveform ID, specified as one of these options.

» Integer in the range [1, 22] or [32, 49] — Use this option when you set the TransmissionFormat
property to "TC-LM".

* Integer in the range [1, 19] — Use this option when you set the TransmissionFormat property
to "SS-TC-LM".

Based on the TransmissionFormat and WaveformID properties, the System object considers the
transmission parameters according to ETSI EN 301 545-2 Annex A Table A-1 and A-2 [1].

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to false.

Data Types: double | unit8

PreBurstGuardLength — Preburst guard length
0 (default) | nonnegative integer

Preburst guard length, specified as a nonnegative integer. This length represents the number of zero-
valued symbols in the guard time that are prefixed to the burst symbols, prior to the preamble.

A value of 0 indicates no guard symbols are prefixed.

dvbrcs2WaveformGenerator

Tunable: Yes

Data Types: double

PostBurstGuardLength — Postburst guard length
0 (default) | nonnegative integer

Postburst guard length, specified as a nonnegative integer. This length represents the number of
zero-valued symbols in the guard time that are suffixed to the burst symbols, after the postamble.

In absence of the postamble, these symbols are suffixed directly after the payload symbols.

Tunable: Yes

Data Types: double

FilterSpanInSymbols — Filter span in symbols
10 (default) | positive integer

Filter span in symbols, specified as a positive integer.

The ideal impulse response of the raised cosine filter is truncated to a length that spans the number
of symbols specified in this property.

Data Types: double

SamplesPerSymbol — Number of samples per symbol
4 (default) | positive integer

Number of samples per symbol, specified as a positive integer.

Data Types: double

PayloadLengthInBytes — Payload length
10 (default) | positive integer

Payload length in bytes, specified as one of these options.

* Integer in the range [3, 65,535] — Use this option when you set the ContentTypeproperty to
"control" or "logon".

* Integer in the range [5, 65,535] — Use this option when you set the ContentType property to
"traffic".

This length represents the size of the input data to the turbo encoder of this System object. Input
data includes the frame PDU and the cyclic redundancy check (CRC) bits.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

MappingScheme — Mapping scheme
"pi/2-BPSK" (default) | "QPSK" | "8PSK" | "16QAM"

Mapping scheme, specified as one of these values.

4-53

4 System Objects

* "pi/2-BPSK"
. "QPSK"

. "8PSK"

. "16QAM"

Dependencies

To enable this property, set the TransmissionFormat property to "TC-LM" and the
IsCustomWaveform property to true.

Note When you set the TransmissionFormat property to "SS-TC-LM", the only valid value of
MappingScheme is "pi/2-BPSK".

Data Types: char | string

CodeRate — Code rate
II1/3II (default)| II1/2II | II2/3II | II3/4II | II4/5II | II5/6II | II6/7II | II7/8II

Code rate, specified as one of these values.

e "2/3","3/4","4/5","5/6", "6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "8PSK".

e« "3/4","4/5","5/6","6/7", or "7/8" — Use one of these values when you set the
MappingScheme property to "16QAM".

All code rates are applicable if MappingScheme property is set to "pi/2-BPSK" or "QPSK".

This code rate is passed as an input to the turbo encoder function, that is, dvbrcs2TurboEncode, of
this System object.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: char | string

PreambleLength — Preamble length
8 (default) | integer in the range [0, 255]

Preamble length, specified as an integer in the range [0, 255].

When you set the TransmissionFormat property to "TC-LM", the unit of preamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of preamble
length is chips.

A preamble of this specified length is prefixed to the burst sequence, prior to the modulation.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.

4-54

dvbrcs2WaveformGenerator

Data Types: double

PostambleLength — Postamble length
8 (default) | integer in the range [0, 255]

Postamble length, specified as an integer in the range [0, 255].

When you set the TransmissionFormat property to "TC-LM", the unit of postamble length is
symbols. When you set the TransmissionFormat property to "SS-TC-LM", the unit of postamble
length is chips.

A postamble of this specified length is suffixed to the burst sequence, prior to the modulation.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PilotPeriod — Pilot period
0 (default) | integer in the range [0, 4095]

Pilot period, specified as an integer in the range [0, 4095]. A value of 0 indicates no pilots are
inserted.

When you set the TransmissionFormat property to "TC-LM", the unit of pilot period is symbols.
When you set the TransmissionFormat property to "SS-TC-LM", the unit of pilot period is chips.

The pilot period represents the length of the sequence from first symbol of a pilot block to the first
symbol of the next pilot block in symbols or chips.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

PilotBlockLength — Pilot block length
1 (default) | integer in the range [1, 255]

Pilot block length, specified as an integer in the range [1, 255].

After every PilotPeriod symbols or chips, a pilot block of this specified length is added in the burst
sequence.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true and PilotPeriod property to
a positive integer.

Data Types: double

4-55

4 System Objects

4-56

PermutationParameters — Permutation control parameters
[9 0 0 0 0] (default) | vector

Permutation control parameters that the dvbrcs2WaveformGenerator uses to generate turbo encoder
interleaver indices, specified as a five-element vector in order: P, Q,, Q;, Q,, and Qs. P must be in the
range [9, 255], and Q,, Q,, Q,, and Q; must be in the range [0, 15].

To generate unique interleaver indices, the value of P must be co-prime to
PayloadLengthInBytes*4.

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.
Data Types: double

UniqueWord — Unique word
"FFFF" (default) | character array | string scalar

Unique word, specified as a character array or string scalar.

A unique word is a string of hexadecimal values that include the combination of the preamble, one
pilot block, and the postamble sequence. Pilots are included only when you set the PilotPeriod
property as nonzero.

To know the minimum required length of the unique word, use this formula.

ceil((PreambleLength + PostamblelLength + PilotBlockLength)*bps/4); where bps is the bits
per seconds, determined by the MappingScheme specified.

For example, if PreambleLength = 9, PostamblelLength = 8, PilotBlockLength =1, and
MappingScheme = "QPSK" (bps = 2) then the minimum required length of the unique word by using
this formula:

ceil((9 + 8 + 1)*2/4) = 9 (hexadecimal values)

Tunable: Yes

Dependencies

To enable this property, set the IsCustomWaveform property to true.

Data Types: char | string

SpreadingFactor — Spreading factor
2 (default) | integer in the range [2, 16]

Spreading factor, specified as an integer in the range [2, 16].

Tunable: Yes

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.

dvbrcs2WaveformGenerator

Data Types: double

ScramblingPolynomial — Scrambling polynomial
16-bit zero vector (default) | 16-bit vector of binary values | numeric vector

Scrambling polynomial, specified as one of these options.

 16-bit vector of binary values from the most significant bit (MSB), 2'6, to least significant bit
(LSB), z!. Each element of this vector corresponds to the coefficient of z and its exponent,
specified from MSB to LSB. For details on the binary representation, see ETSI EN 301 545-2
Section 7.3.7.1.5.

* Numeric vector containing the exponents of z for nonzero terms of the polynomial in descending
order.

The scrambling polynomial determines the shift register feedback connection to generate the
spreading sequence.

The coefficient of 20 is always 1.

The default value of this scrambling polynomial indicates the default scrambling sequence provided
in the standard. When you set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to false, all of the reference waveforms use this default scrambling
sequence.

Tunable: Yes

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
IsCustomWaveform property to true.

Data Types: double | logical

ScramblingInitialConditions — Scrambling initial conditions
[111111111111111 1] (default)| 1] 16-bitvector ofbinary values

Scrambling initial conditions of the shift register, specified as one of these options.

* 1 — Use this option to set the initial condition of each cell of the shift register to this value.

 16-bit vector of binary values from the MSB (2'6) to LSB (2!) — Use this option to set the initial
condition of each cell of the shift register to the corresponding element in this vector.

For this System object to generate a nonzero sequence, you must specify at least one nonzero
element in this vector.

Tunable: Yes

Dependencies

To enable this property, set the TransmissionFormat property to "SS-TC-LM" and the
ScramblingPolynomial property to a value other than the default value.

Data Types: double | logical

FramePDULength — Frame PDU length
48 (default) | positive integer

4-57

4 System Objects

This property is read-only.
Frame PDU length, returned as a positive integer.

The frame PDU length indicates the length in bits of the input data to this System object. This length
is calculated by subtracting the length of the CRC sequence from the payload length in bits.

Data Types: double
Usage

Syntax
burst = rcs2WaveGen(pdu)
Description

burst = rcs2WaveGen(pdu) generates a DVB-RCS2-based burst symbols for the corresponding
input binary sequence.

Input Arguments

pdu — Frame PDU
binary-valued column vector

Frame PDU, specified as a binary-valued column vector.

Data Types: double | Logical
Output Arguments

burst — DVB-RCS2-based burst samples
column vector

DVB-RCS2-based burst samples, returned as a column vector.

The System object outputs these burst symbols (including the guard symbols) post modulation and
pulse shaping.

Data Types: double
Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dvbrcs2WaveformGenerator
info Characteristic information about object

Common to All System Objects
step Run System object algorithm

4-58

dvbrcs2WaveformGenerator

release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object
Examples

Generate Reference DVB-RCS2 Waveform
Generate a reference DVB-RCS2 time-domain waveform with SS-TC-LM format.

Create and then set the properties of a DVB-RCS2 waveform generator System object™.
wg = dvbrcs2WaveformGenerator;
wg.TransmissionFormat = "SS-TC-LM";
wg.ContentType = "logon";
wg.WaveformID = 10;
wg.SamplesPerSymbol = 6;
Display the properties of the waveform generator.
disp(wg)
dvbrcs2WaveformGenerator with properties:
TransmissionFormat: "SS-TC-LM"
ContentType: "logon"
IsCustomWaveform: false
WaveformID: 10
PreBurstGuardLength: 0
PostBurstGuardLength: 0
FilterSpanInSymbols: 10
SamplesPerSymbol: 6
Use get to show all properties

Generate a frame PDU.

framePDU = randi([0 1],wg.FramePDULength,1);

Generate the DVB-RCS2-based burst samples.

txWaveform = wg(framePDU);

Generate Custom DVB-RCS2 Waveform
Generate a custom DVB-RCS2 time-domain waveform having TC-LM format.

Create and then set the properties of the DVB-RCS2 waveform generator System object™.

wg = dvbrcs2WaveformGenerator;
wg.IsCustomWaveform = true;

4-59

4 System Objects

wg.ContentType = "control";
wg.MappingScheme = "QPSK";

wg.CodeRate = "2/3";

wg.PreambleLength = 10;
wg.PostamblelLength = 8;
wg.PermutationParameters = [13 4 2 1 2];
wg.UniqueWord = "FFFFFFFFF";

Display the properties of the waveform generator.
disp(wg)
dvbrcs2WaveformGenerator with properties:
TransmissionFormat: "TC-LM"
ContentType: "control"
IsCustomWaveform: true
PreBurstGuardLength: 0
PostBurstGuardLength: 0
FilterSpanInSymbols: 10
SamplesPerSymbol: 4
PayloadLengthInBytes: 10
Use get to show all properties
Generate a frame PDU.
framePDU = randi([0 1],wg.FramePDULength,1);
Generate the DVB-RCS2-based burst samples.

txWaveform = wg(framePDU) ;

Generate Multiple Content Type DVB-RCS2 Bursts
Generate multiple ContentType DVB-RCS2 bursts.

Set the ContentType of the DVB-RCS2 waveform generator System Object™ as lLogon.

wg = dvbrcs2WaveformGenerator;
wg.ContentType = "logon";

Generate a frame PDU.

framePDUl = randi([0 1],wg.FramePDULength,1);
Generate the DVB-RCS2 logon burst samples.
txWaveforml = wg(framePDU1l);

Now, generate the DVB-RCS2 traffic burst samples.
% ContentType property is tunable
wg.ContentType = "traffic";

framePDU2 = randi([0 1],wg.FramePDULength,1);
txWaveform2 = wg(framePDU2);

4-60

dvbrcs2WaveformGenerator

References

[1] ETSI Standard EN 301 545-2 V1.2.1(2014-11). Digital Video Broadcasting (DVB); Second
Generation Interactive Satellite Systems (DVB-RCS2).

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
dvbrcs2TurboEncode | dvbrcs2BitRecover

Objects
dvbrcs2RecoveryConfig

Introduced in R2021b

4-61

4 System Objects

4-62

gpsPCode

Generate P-code for GPS satellites

Description

The gpsPCode System object generates a precision code (P-code) for a Global Positioning System
(GPS) satellite, as defined in IS-GPS-200L Section 3.3.2.2 [1].

To generate a P-code for a GPS satellite:

1 Create the gpsPCode object and set its properties.
2 (Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax

pgenerator = gpsPCode

pgenerator = gpsPCode(Name,Value)

Description

pgenerator = gpsPCode creates a default P-code generator System object.

pgenerator = gpsPCode(Name,Value) sets “Properties” on page 4-62 using one or more name-

value pairs. For example, 'PRNID', 10 specifies a pseudo-random noise (PRN) ID of 10.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PRNID — GPS satellite PRN index
1 (default) | integer in the range [1, 210] | vector of integer elements in the range [1, 210]

GPS satellite PRN index, specified as one of these options.

» Integerin the range [1, 210] — Use this option to input a PRN index for a single satellite.

* Vector of integer elements in the range [1, 210] — Use this option to input PRN indices for
multiple satellites.

gpsPCode

For details on PRN ID values, see IS-GPS-200L Tables 3-Ia, 3-Ib, and 6-1 [1].
Data Types: double | uint8

OutputCodeLength — Output code length
10230 (default) | positive integer

Output code length, specified as a positive integer. This length specifies the number of rows in the
output P-code.

The default value of 10230 corresponds to 1 millisecond of P-code, as the P-code chips are at 10.23
MHz.

Tunable: Yes

Data Types: double | uint64

InitialStateFormat — Format of the initial state

"seconds" (default) | "datetime" | "chips"

Format of the initial state, specified as "seconds", "datetime", or "chips".

Data Types: char | string

InitialTime — Initial time within one week
0 (default) | integer in the range [0, 604,800] | datetime object

Initial time within one week, specified as one of these options.

* Integer in the range [0, 604,800] — Use this option when you set the InitialStateFormat
property to "seconds". In this case, initial time specifies the seconds that have elapsed from the
beginning of the week.

* datetime object — Use this option when you set the InitialStateFormat property to
"datetime". In this case, initial time specifies the time elapsed from the beginning of the week to
the time specified by datetime object.

Note The P-code is one week long.

The default value of 0 assumes that you set the InitialStateFormat property to "seconds".

Dependencies

To enable this property, set the InitialStateFormat property to "seconds" or "datetime".

Data Types: double

InitialNumChipsElapsed — Initial number of elapsed P-code chips
0 (default) | integer in the range [0, 604,800x10.23e6]

Initial number of elapsed P-code chips, from the beginning of the week, specified as an integer in the
range [0, 604,800x10.23e6].

The maximum input value, 604,800x10.23e6, is the total number of chips elapsed in one week
(7%x24x60x60%10.23€6).

4-63

4 System Objects

4-64

Note 10.23e6 is the number of chips elapsed in one second.

Dependencies

To enable this property, set the InitialStateFormat property to "chips".
Data Types: double | uint64

Usage

Syntax

code = pgenerator()
Description

code = pgenerator()
Output Arguments

code — Generated binary-valued P-code
vector | matrix

Generated binary-valued P-code, specified as one of these options.

* Vector — The System object returns this option when you specify the PRNID property as a scalar.

* Matrix — The System object returns this option when you specify the PRNID property as a vector.
Each column of this matrix represents the generated P-code corresponding to the element in the
PRNID vector.

The number of rows is equal to the value of the OutputCodeLength property. The number of columns
is equal to the length of the PRNID property. Each element of the vector or matrix is of data type
int8.

Data Types: int8
Object Functions

To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to gpsPCode

info Characteristic information about object

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and input
characteristics

clone Create duplicate System object

gpsPCode

isLocked Determine if System object is in use
reset Reset internal states of System object

Examples
Generate P-code When Initial Format Is Seconds

Create a precision code generator (P-code) System object™, and then set its properties.

pgen = gpsPCode;

pgen.PRNID = [10 50]; % 2 satellites
pgen.OutputCodeLength = 1024;

pgen.InitialTime = 1800; % Seconds (default)
disp(pgen)

gpsPCode with properties:

PRNID: [10 50]
OutputCodeLength: 1024
InitialStateFormat: "seconds"
InitialTime: 1800

Generate the P-code.

code = pgen();

Generate P-code When Initial Format Is Chips

Create the P-code System object™ and set its properties.
pgen = gpsPCode;

pgen.PRNID = 45;
pgen.QutputCodeLength = 102400;

Set the initial state format as chips. Generate the P-code for the last 5,000 chips in one week.
pgen.InitialStateFormat = "chips";

% 604,800 is the total seconds in one week

% 10.23e6 is the number of P-code chips that elapsed in one second

pgen.InitialNumChipsElapsed = 604800*10.23e6 - 5000;
code = pgen();

Generate P-code When Initial Format Is datetime Object
Create a P-code System object™ and specify the PRN index and the output code length.

Set the format of the initial state as a datetime object. Generate the P-code for the current time.
pgen = gpsPCode;

pgen.PRNID = 25;
pgen.OutputCodeLength = 20460;

4-65

4 System Objects

pgen.InitialStateFormat = "datetime";
pgen.InitialTime = datetime("now");
code = pgen();

Display the properties of the P-code generator.
disp(pgen)
gpsPCode with properties:

PRNID: 25
OutputCodelLength: 20460
InitialStateFormat: "datetime"
InitialTime: 01-Sep-2021 10:04:00

Get P-Code State Information

Get information from a gpsPCode System object™ by using the info object function. Observe how
the precision of initial time impacts the generation of the P-code.

Create a P-code generator System object™, and then specify its properties.

format long
pgen = gpsPCode

pgen =
gpsPCode with properties:

PRNID: 1
OutputCodeLength: 10230
InitialStateFormat: "seconds"
InitialTime: O

pgen.InitialStateFormat = "chips";
pgen.InitialNumChipsElapsed = 8388600;

Get the characteristic information about the P-code generator.
pgen.info

ans = struct with fields:
TotalNumChipsElapsed: 8388600
TotalSecondsElapsed: 0.820000000000000

Advance the time by a quarter of a P-code chip time (that is, 0.25/10.23e6).

pgenl = gpsPCode;
pgenl.InitialTime = pgen.info.TotalSecondsElapsed + 0.25/10.23e6

pgenl =
gpsPCode with properties:

PRNID: 1
OutputCodeLength: 10230

4-66

gpsPCode

InitialStateFormat: "seconds"
InitialTime: 0.820000024437928

pgenl.info

ans = struct with fields:
TotalNumChipsElapsed: 8388600
TotalSecondsElapsed: 0.820000000000000

The info function output shows no increment in the TotalNumChipsElapsed in this case, because
TotalNumChipsElapsed is calculated internally using the function round.

Advance the time by half of a P-code chip time now (that is, 0.5/10.23€6).

pgen2 = gpsPCode;
pgen2.InitialTime = pgen.info.TotalSecondsElapsed + 0.5/10.23e6

pgen2 =
gpsPCode with properties:

PRNID: 1
OutputCodelLength: 10230
InitialStateFormat: "seconds"
InitialTime: 0.820000048875855

pgen2.info

ans = struct with fields:
TotalNumChipsElapsed: 8388601
TotalSecondsElapsed: 0.820000097751711

The info function output now shows the TotalNumChipsElapsed is incremented by one, due to the
internal usage of round () function.

Compare the output of each System object call.

code = pgen();

codel = pgenl();

code2 = pgen2();

isequal(code, codel) % code and codel are equal

ans = logical
1

isequal(codel,code2) % codel and code2 are unequal

ans = logical
0

4-67

4 System Objects

References

[1] IS-GPS-200L. "NAVSTAR GPS Space Segment/Navigation User Segment Interfaces." GPS
Enterprise Space & Missile Systems Center (SMC) - LAAFB, May 14, 2020.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
gnssCACode

Objects
comm.GoldSequence | comm.PNSequence

Topics
“GPS Waveform Generation”

Introduced in R2021b

4-68

	Apps
	Satellite Link Budget Analyzer

	Functions
	ccsdsRSEncode
	ccsdsRSDecode
	dvbs2BitRecover
	p618PropagationLosses
	p618SiteDiversityOutage
	ccsdsTCWaveform
	ccsdsTCIdealReceiver
	info
	flushFilter
	satellite
	conicalSensor
	satelliteScenarioViewer
	play
	pointAt
	camroll
	campitch
	campos
	camheading
	camheight
	camtarget
	hideAll
	showAll
	accessPercentage
	linkPercentage
	linkStatus
	linkIntervals
	aer
	accessIntervals
	orbitalElements
	accessStatus
	states
	gimbalAngles
	show
	hide
	ebno
	access
	groundStation
	transmitter
	receiver
	gimbal
	fieldOfView
	link
	gaussianAntenna
	groundTrack
	gnssCACode
	dvbrcs2TurboEncode
	dvbrcs2TurboDecode
	pattern
	dvbrcs2BitRecover

	Objects
	ccsdsTCConfig
	p618SiteDiversityConfig
	p618Config
	satelliteScenario
	skyplot
	SkyPlotChart
	Satellite
	GroundStation
	Access
	ConicalSensor
	Transmitter
	Receiver
	Gimbal
	FieldOfView
	Link
	GroundTrack
	Pattern
	dvbrcs2RecoveryConfig

	System Objects
	dvbs2WaveformGenerator
	dvbs2xWaveformGenerator
	etsiRicianChannel
	ccsdsTMWaveformGenerator
	dvbrcs2WaveformGenerator
	gpsPCode

